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Abstract 

   

1 | Introduction  

Chaotic dynamical systems have complex, nonlinear behaviors. The most important characteristics 

of chaotic dynamic systems are: high sensitivity to initial conditions, amazing attractions and the 

presence of at least one positive view of Lyapunov. In modeling natural phenomena, the more we 

move towards real models, the more complexities and uncertainties we encounter. Hence, the closer 

we consider the said effects in modeling these phenomena, the closer we get to the real situation. In 

other words, all-natural phenomena have linear, nonlinear, chaotic and even hyperchaotic models. 

Depending on what our purpose of modeling is, these models are selected. The famous meteorologist, 

Edward Lorenz, first proposed the turbulent model of meteorology in [1]. Since then, the notion of 

chaos has been used in engineering sciences. The chaos in engineering sciences has been conductrd 

in different applications: aerospace [2] and [3], guidance and navigation [4], electric motors [5], 

microelectromechanics [6], secure telecommunications [7] and [8], and many others applications [9] 
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and [10]. The issue of chaos control was first raised in the synchronization of two chaotic systems in 1990 

[11]. As mentioned, chaos behaves inappropriately, therefore, one of the efforts of researchers in this field 

is to control and eliminate chaotic behavior in dynamic systems. The various control goals for a chaotic 

system are: 1) Elimination of chaos and stability at one of the equilibrium points. 2) Synchronization of 

two chaotic systems, 3) control of two branches. For these control purposes, several methods such as 

nonlinear control [12], fuzzy control [13], adaptive control [14], adaptive slip model control [15], and also 

sliding fuzzy control [16] were mentioned. The purpose of a supply chain is to deliver a product at the 

right time and place to customers. Companies need a supply chain to increase competitiveness. The supply, 

production, distribution, and retail sectors must be fully stable, so that the supply chain become ultimately 

stable. The hyperchaos system was first introduced by Russler [17]. After that this has been introduced 

hyperchaos Chua’s circuit [18], hyperchaotic Lorenz system [19], hyperchaotic Chen system [20]. Hyper-

chaotic systems, characterized as a chaotic attractor with more than one positive Lyapunov exponents, can 

generate much more complicated dynamics [21]. 

Over the past decade, supply chain researchers have turned their attention to modeling, planning, analysis, 

and design with a nonlinear perspective [22] and [23]. Studies in supply chain models show that some of 

them can have complex or nonlinear behaviors [24] and [25]. For example, how customer behavior, 

distributor efforts to control inventory levels, as well as factory production or raw material supply, can 

disrupt the supply chain. The whipping effect in the supply chain model, in which information flow is also 

disrupted, causes the supply chain behavior to be nonlinear, especially if orders increase at each level. In 

[26], synchronization of chaotic supply chain is considered by considering the whipping effect by radial 

base neural network method. The supply chain model of this three-tier method includes manufacturer, 

distributor and consumer. Uncertainty in all three levels is also considered for this model. In [27], the same 

model is used with the adaptive sliding model control method to control and synchronize the chaotic 

supply chain. In this method, an attempt has been made to adjust the control parameters in such a way as 

to eliminate the chatting phenomenon, which has caused the time to reach zero error to be slightly 

increased. The control signal also has chattering. The use of neural network method has been suggested in 

[28].  The linear feedback control method and the neural networks are compared. The important point after 

designing the controller is the cost of its implementation. In this method, the control signal is not depicted. 

In other words, the final cost of this method will be unknown. The robust control for the five-level supply 

chain network is introduced in [29]. As mentioned earlier, the control signal, which represents the cost of 

design, is not depicted. In [30] the active control method is used to control the hyperchaotic supply chain. 

In the results of this method, it can be seen that the time to reach zero error is long. In other words, supply 

chain management will be costly. 

This article, consider hyperchaos control in the supply chain network using a nonlinear controller. Control 

policy (or control signal) is a very important issue in supply chain stability. In the other hand, the cost of 

control and stability of the supply chain network is related to the design of the control policy. Sometimes 

the supply chain is stable, but the costs are very high. The behavior of hyperchaotic dynamics is highly 

oscillated, so it can increase supply chain control costs. Therefore, if the control policy (or control signal) 

has low amplitude and oscillations, the cost of supply chain control will be low. Numerical simulation 

refers to three important parts. First, synchronization of two hyperchaotic supply chains with different 

initial conditions, then, stability and elimination of hyperchaotic behavior in the supply chain network and 

in the third part, optimization of the controller implementation cost are discussed. The simulation results 

show that the intended target function is completely achievable by the nonlinear control. Also, the 

amplitude and oscillations of the hyperchaos supply chain control are illustrated. 

This paper is organized as follows: Section 2 refers to modeling and mathematical analysis of the hyper-

chaotic supply chain network will be examined. In Section 3, the proposed method for supply chain control 

and stability is described. In Section 4, the results of numerical simulation will be illustrated and analyzed. 

Finally, the concluding remarks in the lase section. 
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2 | Dynamic Supply Chain Modeling 

In this section, we consider the design of a supply chain model of raw material, manufactures, 

distributiors and retailers. Fig. 1 illustrates the information and product flow of a supply chain network. 

As mentioned earlier, this network is a four-level supply chain. Model parameters are: 

i. Time period. 

a. Delivery rate of the distributor to the retailer. 

b. Estimation of customer request. 

c. The degree of distortion of customer request information for products. 

d. Distributor inventory correction factor. 

e. Safety factor of products produced in the factory. 

f. The supply of raw materials in the factory. 

g. Safety factor of raw material supplier. 

h. The amount of factory demand for raw materials. 

x. The amount of the retailer request in the current period. 

y. The amount that the distributor can distribute in the current period. 

z. Number of products produced in the factory for the current period. 

w. The number of raw materials to produce the product at the request of the factory in the current period. 

The first step in supply chain modeling is to find the connection between these four elements. In other 

words, the relationship between the retailer and the supplier and how the uncertainties between the 

retailers and the distributora are seen in the factory mathematically formulated. 

Assumption 1. Information is transmitted along the supply chain with a delay of one-time unit. Thus, 

the behavior of the model in stage i is affected by the information in stage i-1. The customer requests at 

a rate and the distributor can meet the demand response with a coefficient. 

 

which, a is the coefficient of delivery of the product from the distributor to the retailer in the previous 

stage and b is the satisfaction of the retailer in the previous stage. Uncertainty between distributor and 

manufacturer is 
− −i 1 i 1

y z . 

Receive retailer requests with a coefficient of information deviation (at the distributor station, retail 

requests are processed at a rate and will be prepared with a coefficient). And on the other hand, they are 

always looking to control their inventory level. For this scenario we have Eq. (2). Therefore: 

 

Fig. 1. Schematic representation of a four-level supply chain. 

i i 1 i 1 i 1 i 1
x ay bx y z ,

− − − −
= − +  (1) 

− − − −
= + −

i i 1 i 1 i 1 i 1
y cx dy z x .  (2) 
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In Eq. (2), c is the rate of distortion of the information of the products required by the retailer that reaches 

the distributor, d is the coefficient of control of the distributor's inventory level as well as the uncertainty 

between the retailer and the manufacturer 
− −i 1 i 1

z x . The output of each stage of production depends on 

two major factors. Production line safety factor and the coefficient of raw material supplier. Thus, in each 

step, these two coefficients are obtained from the previous step. 

which e is the safety factor of the product in the factory, and f is the demand factor for the raw materials 

supplier. There 
− −i 1 i 1

y x is also uncertainty between the retailer and the distributor. The task of this level is 

to supply the raw materials of the factory to produce the product. The amount of raw material supply at 

the supplier level depends on the request of the factory in the previous stage and also the safety factor of 

raw material supply in each stage depends on the previous stage. So 

Which g is the safety stock of raw material supply for suppliers and h is the amount of factory raw material 

demand at each stage, which depends on the previous stage. There 
− −i 1 i 1

y x is also uncertainty between the 

retailer and the distributor. According to Eq. (1) to (4), Eq. (5) is obtained. 

Where a, b, c, d, e, f, g, h are system parameters, always positive and x, y, z, w are system variables. If 

= = =α a b 50 and = = =β c d 24 and = = = =e 13, g 8, f 33,h 30  and if i (time period in the supply chain) 

is small enough, then Eq. (5) is rewritten as a dynamic Eq. (6). 

Also, its initial condition =T T[x(0), y(0), z(0),w(0)] [3, 1, 2, 2] . Eq. (6) is known as the hyperchaotic 

equations Qi. These equations were introduced by Qi et al. [31]. With the proposed model, and its 

implementation for the four-level supply chain, a new model of hyperchaotic supply chain is introduced. 

Fig. 2 shows the behavior of the hylerchaotic variables of the four-level supply chain. If i is small enough, 

then Eq. (5) is rewritten as dynamic Eq. (6). 

Chaotic and hyperchaotic systems have unstable equilibrium points. An equilibrium points for any linear 

and nonlinear equations is zero. Therefore:  

 

 

 

i i 1 i 1 i 1 i 1
z ez fw y x ,

− − − −
= − − +  (3) 

− − − −
= − − +

i i 1 i 1 i 1 i 1
w gw hz y x .  (4) 

− − − −

− − − −

− − − −

− − − −

= − +

= + −

= − − +

= − − +

i i 1 i 1 i 1 i 1

i i 1 i 1 i 1 i 1

i i 1 i 1 i 1 i 1

i i 1 i 1 i 1 i 1

x ay bx y z .

y cx dy z x .

z ez fw y x .

w gw hz y x .

 (5) 

− −

= − +

= + −

= − − +

= − − +

i 1 i 1

x α(y x) yz.

y β(x y ) zx.

z ez fw yx.

w gw hz yx.

 (6) 

=
=
=
=

     −
     
     

=     − −
     

− −     
          

x 0
y 0
z 0
w 0

x b a 0 0 x

y c d 0 0 y
.z 0 0 e f z

w 0 0 h g w

 
(7) 
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By calculating the eigenvalues of the linearized matrix around the equilibrium points: 

= − = = − = −
1 2 3 4

λ 63.68,λ 37.68 ,λ 42.06 ,λ 21.06 . The hyperchaotic dynamic equations of the supply 

chain at the equilibrium point are unstable. 

 

Fig. 2. Hyperchaotic supply chain behavior. 

 

3 | Synchronization of Qi Hyperchaotic Supply Chain 

Synchronization of two hyperchaotic system, means controlling the output of the following system so 

that it follows the output of the master system. Given that the hyperchaotic supply chain model was 

proven in the previous section, it will now be designed to control the supply chain stability. Fig. 3 shows 

the synchronization scheme of two hyperchaotic supply chains. 

Fig. 3. The concept of chaos synchronization. 

The master supply chain is  

 

 

 

 

= − +

= + −

= − − +

= − − +

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

x α(y x ) y z .

y β(x y ) z x .

z e z f w y x .

w g w h z y x .

 (7) 
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Also, the slave supply chain is 

That x , y , z ,w are variables supply chain, α,β,e, f , g are parameters and 
x y z w

u ,u ,u ,u  are control 

policies for management of hyper chaotic supply chain system. 

In order, supply chain Eq. (8) to follow supply chain Eq. (7), they must 
x y z w

u ,u ,u ,u  be designed. As 

mentioned earlier, one of the most important characteristics of chaotic and hyperchaotic systems is 

sensitivity to initial conditions. Eq. (7) and (8) are identical systems, but if the initial conditions of Systems 

(7) and (8) are different, their behavior will be different. See Fig. (4). 

 The first step is to calculate the error between the master and slave systems. 

The objective function for the model is defined as: 

 

Fig. 4. Hyperchaotic supply chain behavior. 

If derived from Eq. (9), and also by substituting Eq. (7) and (8) in Eq. (9).  

 

 

 

= − + +

= + −

= − − + +

= − − +

2 2 2 2 2 x

2 1 1 1 1 y

2 2 2 2 2 2 2 z

2 2 2 2 2 2 2 w.

x α(y x ) y z u .

y β(x y ) z x u .

z e z f w y x u .

w g w h z y x u

 (8) 

= −

= −

= −

= −

1 2 1

2 2 1

3 2 1

4 2 1

e (t) x (t) x (t).

e (t) y (t) y (t).

e (t) z (t) z (t).

e (t) w (t) w (t).

 (9) 

→
= = n

it
lim || e (t) || 0, i 1,2,3, 4 ,forall e(0) .  (10) 

= − + + − − +

= + − + − + −

= − − + + − − − +

= − − + + − − − +

1 2 2 2 2 x 1 1 1 1

2 2 2 2 2 y 1 1 1 1

3 2 2 2 2 z 1 1 1 1

4 2 2 2 2 w 1 1 1 1

e (t) α(y x ) y z u (α(y x ) y z ).

e (t) β(x y ) z x u (β(x y ) z x ).

e (t) ez fw y x u ( ez fw y x ).

e (t) gw hz y x u ( gw hz y x ).

 (11) 
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Theorem 1. The error of the hyperchaotic supply chain system asymptotically move to zero, if the 

control policies are designed as follows: 

 

 

There =
i

λ (i 1, 2 ,3 , 4) are gains controller.  

Proof. According to Lyapunov, if a positive function is definite and its derivative moves to zero and 

eventually negative over time, the function is shrinking over time. 

Consider Lyapunov's candidate function as follows: 

 

By deriving Eq. (13), and substituting Eq. (11): 

 

 

 

Also, if Eq. (12) is placed in Eq. (14): 

 

The proof was complete. 

3 | Stability of Qi Hyperchaotic Supply Chain 

Sometimes the only goal is the stability of the supply chain model. Therefor, the hyperchaotic 

misbehavior must now be removed from the supply chain model and the supply chain must move 

toward one of its stable equilibrium points. Thus: 

 

 

 

See Fig. 5 for a better understanding. 

 

= − − + + − + +

= − + − + + − +

= − − − + − − + +

= − − − + − − + +

x 2 2 2 2 1 1 1 1 1 1

y 2 2 2 2 1 1 1 1 2 2

z 2 2 2 1 1 1 1 3 3

w 2 2 2 2 1 1 1 1 4 4

u (α(y x ) y z ) α(y x ) y z λ e .

u (β(x y ) z x ) β(x y ) z x λ e .

u ( ez fw y x) ez fw y x λ e .

u ( gw hz y x ) gw hz y x λ e .

 (12) 

=

= 
4

2

1 2 3 4 i
i 1

1
V(e ,e ,e ,e ) e .

2
 (13) 

= + + +

= − + + − − +

+ + − + − + −

+ − − + + − − − +

+ − − + + − − − +

1 1 2 2 3 3 4 4

1 2 2 2 2 x 1 1 1 1

2 2 2 2 2 y 1 1 1 1

3 2 2 2 2 z 1 1 1 1

4 2 2 2 2 w 1 1 1 1

V e e e e e e e e ,

e (α(y x ) y z u (α(y x ) y z ))

e (β(x y ) z x u (β(x y ) z x ))

e ( ez fw y x u ( ez fw y x ))

e ( gw hz y x u ( gw hz y x )).

 
(14) 

= + + +   2 2 2 2

1 1 1 3 1 3 1 4 1 2 3 4
V λ e λ e λ e λ e V 0 if λ ,λ ,λ ,λ 0.  (15) 

= − + +

= + − +

= − − + +

= − − + +

1 1 1 1 1 x

1 1 1 1 1 y

1 1 1 1 1 z.

1 1 1 1 1 w

x α(y x ) y z u .

y β(x y ) z x u .

z ez fw y x u

w gw hz y x u .

 (16) 
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Fig. 5. Supply chain control policy for eliminate hyperchaotic behavior. 

Here, control policies must be designed so that the behavior of hyperchaotic supply chain variables moves 

toward the desired value. For this purpose, we again go to the definition of the error Function (10). 

There =* * * *x (t ), y (t ), z (t ),w (t ) 0  are desire or sets points. Derived from the recent equation: 

Theorem 2. The objective function expressed in Eq. (10) moves asymptotically to zero if the control policy 

in the supply chain model is designed as follows: 

There =
i

λ (i 1, 2 ,3 , 4) are gain controller.  

Proof 2. Consider Lyapunov's candidate function as follows: 

By deriving Eq. (20), and substituting Eq. (18): 

Also, if Eq. (16) and (19) is placed in Eq. (21): 

 

= −

= −

= −

= −

*

1

*

2

*

3

*

4

e (t) x(t) x (t).

e (t) y(t) y (t).

e (t) z(t) z (t).

e (t) w(t) w (t).

 (17) 

= −

= −

= −

= −

*

1

*

2

*

3

*

4

e (t) x(t) x (t).

e (t) y(t) y (t).

e (t) z(t) z (t).

e (t) w(t) w (t).

 (18) 

= − − + +

= − + − +

= − − − + +

= − − − + +

x 1 1 1 1 1 1

y 1 1 1 1 2 2

z 1 1 1 1 3 3

w 1 1 1 1 4 4

u α(y x ) y z λ e .

u (β(x y ) z x ) λ e .

u ( ez fw y x ) λ e .

u ( gw hz y x ) λ e .

 (19) 

=

= 
4

2

1 2 3 4 i
i 1

1
V(e ,e ,e ,e ) e .

2
 (20) 

= + + + =

 − + − + − + −

1 1 2 2 3 3 4 4

* * * *

1 2 3 4

V e e e e e e e e

e (x(t) x (t)) e (y(t) y (t)) e (z(t) z (t)) e (w(t) w (t)).
 (21) 

= − + + − +

+ − + + − +

− − + + − +

− − + + −

*

1 1 1 1 1 x

*

2 1 1 1 1 y 2 2

*

3 1 1 1 1 z

*

4 1 1 1 1 w

V e ((α(y x ) y z u ) x (t))

e ((β(x y ) z x u ) λ e ) y (t))

e (( ez fw y x u ) z (t))

e (( gw hz y x u ) w (t)).

 (22) 
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Simplification and with replaced Eq. (19) in to (22), assuming the desired values are a constant level, 

then its derivative will always be zero. 

 

 

5 | Numerical Simulation 

In this section, the numerical simulation results prove that the two Qi hyperchaotic supply chains 

synchronized with different initial conditions and the proposed nonlinear controller. For numerical 

simulation in the Qi hyperchaotic supply chain model, the fourth-order RangKutta method with step 

0.01 was used. 

The parameters of the hyperchaotic Qi supply chain model are 

= = = = = =α 50,β 24,c 13,d 8,e 33, f 30 , Also, the initial conditions of the master and slave 

hyperchaotic supply chain are equal = −T T

1 1 1 1
[x (0), y (0), z (0),w (0)] [ 1, 1,0 , 1] and 

= −T T

2 2 2 2
[x (0), y (0), z (0),w (0)] [1, 2 ,5 ,3] . The parameters are controller = = = = −

1 2 3 4
λ λ λ λ 10 . 

Fig. 6 shows the synchronization of the two Qi hyperchaotic supply chains. The control policy from      

t=1 has been added to the follower chaotic supply chain model. On average, in less than t <0.5, the 

synchronization error converged to zero, and as well as the slave system tracked the master system. 

Fig. 6. Synchronization of two hyper chaotic Qi systems with different initial conditions 

under the proposed control policy.  

Fig. 6 shows the synchronization error. In other words, the duration of stability and reaching the 

objective function expressed in Eq. (10). 

 

 

= + + +

=  

2 2 2 2

1 1 1 3 1 3 1 4

1 2 3 4

V λ e λ e λ e λ e

V 0 if λ ,λ ,λ ,λ 0.  (23) 
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Fig. 7. Error of the Synchronization of two hyper chaotic Qi systems. 

The any design method that is completed must be evaluated for the cost of implementing it in the real 

world. The simple method of analyzing the controller behavior can be examined in two areas. The first 

domain is the oscillations of the controller signal, and the second domain is the amplitude of the controller 

signal. Fig. 8 shows the proposed controller signal. Mathematically, the behavior of the control signal does 

not have extreme oscillations and large amplitudes. Therefore, it will not cost much to implement the 

method in the real world. 

Fig. 8. Control cost for synchronization of hyperchaos supply chain (or controller signaa). 

In the second part of numerical simulation, the goal is to eliminate the hyperchaotic behavior and going to 

the desired value in the hyper chaotic supply chain model. Also, the proposed controller parameters are 

considered unchanged and like the first part of numerical simulation and the initial conditions are also 

unchanged. Fig. 9 shows the stability and elimination of hyper chaotic behavior in the supply chain model. 

The control policy is applied from t = 1. As can be seen from Fig. 9, the system stability of t <0.5 is 

achievable. 
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Fig. 9. Elimination of hyper chaotic behavior in the supply chain.  

Fig. 10 shows the control signal to eliminate the hyperchaotic behavior in the supply chain. Because the 

controller has been applied to the supply chain since t = 1, the controller value will be zero at times t<1.  

In this model, the distributor is known as the center of gravity of the model. In other words, the 

distributor in this model can take control of prices or in other words control of supply and demand in 

the model. The proof of this claim is described in the following simulation. Consider Eq. (14) as follows: 

Fig. 10. Cost control for elimination of hyperchaos supply chain. 

  

 

 

= − +

= + − +

= − − +

= − − +

1 1 1 1 1

1 1 1 1 1 y

1 1 1 1 1

1 1 1 1 1

x α(y x ) y z .

y β(x y ) z x u .

z ez fw y x .

w gw hz y x .

 (24) 
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As can be seen, the control policy applies only to the distributor. All its parameters are the same as before. 

Initial conditions =T T

1 1 1 1
[x (0), y (0), z (0),w (0)] [2 ,3, 4, 1] . Due to the complexity and highly dependent 

supply chain equations in this model, the distributor alone can eliminate the chaotic behavior. See Fig. 11.  

Fig. 11. Elimination of hyper chaotic behavior in the supply chain with control policy in the distributor. 

The initial conditions in this section are selected differently. Fig. 12 shows that the other three controllers 

are zero at all stages of the simulation and only the controller is applied to the distributor equation. The 

control signal in the distributor does not have much fluctuations and amplitude that can be implemented 

in the real world. Also, economically, its design and implementation costs have been greatly reduced. 

Fig. 12. Policy control in the only distributor for eliminate of the hyperchaos supply chain. 

 

6 | Conclusion 

In this paper, a new four-levels supply chain model based on hyperchaotic dynamics is introduced. This 

model has been shown to have an unstable equilibrium point. In the first part of the simulation, the 

synchronization of two hyperchaotic supply chains with different initial conditions was investigated. The 

simulation results showed that the synchronization error (objective function) moves to zero in a short time 
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(T<0.5) under the nonlinear control method. The controller signal was depicted in synchronization. 

These signals are the same control policies applied in the real world. Therefore, the lower the amplitude 

and oscillations of these signals, the more appropriate they will be. Since supply chain stability and 

control is the most important goal of investors, in the second part of the simulation, the main goal is to 

eliminate the hyperchaotic behavior in the supply chain model. In this section, the simulation results 

show that the control signal can be implemented in the real world to eliminate this behavior. The third 

part of the simulation shows that this supply chain model has a center of gravity. In other hands, by 

using the control policy (control signal) in the distributor, it is possible to achieve stability and eliminate 

chaotic behavior. So, the control signal is only added to the distributor equation. This shows that simple 

solutions can be used in the management of the hyperchaotic supply chain network. Also, economically, 

its design and implementation costs have been greatly reduced. In future research, it is possible to study 

the supply chain of more levels and other hyper-chaotic models. It is useful to investigate the 

uncertainties in the proposed hyper-chaotic supply chain model. The use of the proposed nonlinear 

method is highly dependent on the information flow (system feedback). Hence, if the flow of 

information is interrupted, the control policy can not work well. It is suggested to use adaptive control 

methods to solve this case. Also, for the supply chain model, the use of meta-heuristic methods and 

fuzzy neural networks can reduce the cost of control policy. 

References 

 Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2), 130-141. 
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 

 Hamidzadeh, S. M., & Esmaelzadeh, R. (2014). Control and synchronization chaotic satellite using 

active control. International journal of computer applications, 94(10), 29-33. 

 Sarcheshmeh, S. F., Esmaelzadeh, R., & Afshari, M. (2017). Chaotic satellite synchronization using 

neural and nonlinear controllers. Chaos, solitons & fractals, 97, 19-27. 
https://doi.org/10.1016/j.chaos.2017.02.002 

 Farivar, F., & Shoorehdeli, M. A. (2012). Fault tolerant synchronization of chaotic heavy symmetric 

gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control. ISA 

transactions, 51(1), 50-64. https://doi.org/10.1016/j.isatra.2011.07.002 

 Hamidzadeh, S. M., & Yaghoobi, M. (2015). Chaos control of permanent magnet synchronization 

motor using single feedback control. 2015 2 nd international conference on knowledge-based engineering 

and innovation (KBEI). DOI: 10.1109/KBEI.2015.7436066 

 Tusset, A. M., Balthazar, J. M., Rocha, R. T., Ribeiro, M. A., & Lenz, W. B. (2020). On suppression of 

chaotic motion of a nonlinear MEMS oscillator. Nonlinear dynamics, 99(1), 537-557. 
https://doi.org/10.1007/s11071-019-05421-8 

 Çiçek, S., Kocamaz, U. E., & Uyaroğlu, Y. (2019). Secure chaotic communication with jerk chaotic 

system using sliding mode control method and its real circuit implementation. Iranian journal of science 

and technology, transactions of electrical engineering, 43(3), 687-698. https://doi.org/10.1007/s40998-019-

00184-9 

 Ouannas, A., Karouma, A., Grassi, G., & Pham, V. T. (2021). A novel secure communications scheme 

based on chaotic modulation, recursive encryption and chaotic masking. Alexandria engineering 

journal, 60(1), 1873-1884. https://doi.org/10.1016/j.aej.2020.11.035 

 Andrievskii, B. R., & Fradkov, A. L. (2003). Control of chaos: methods and applications. I. 

Methods. Automation and remote control, 64(5), 673-713. https://doi.org/10.1023/A:1023684619933 

 Andrievskii, B. R., & Fradkov, A. L. (2004). Control of chaos: methods and applications. II. 

Applications. Automation and remote control, 65(4), 505-533. 
https://doi.org/10.1023/B:AURC.0000023528.59389.09 

 Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical review letters, 64(8), 

821. https://doi.org/10.1103/PhysRevLett.64.821 

 Hamidzadeh, S. M., & Ahmadian, V. (2016). Synchronization of chaotic systems via nonlinear control 

design based on lyapunov. Majlesi journal of mechatronic systems, 5(2). 

http://journals.iaumajlesi.ac.ir/ms/index/index.php/ms/article/view/263 

https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1016/j.chaos.2017.02.002
https://doi.org/10.1016/j.isatra.2011.07.002
http://dx.doi.org/10.1109/KBEI.2015.7436066
https://doi.org/10.1007/s11071-019-05421-8
https://doi.org/10.1007/s40998-019-00184-9
https://doi.org/10.1007/s40998-019-00184-9
https://doi.org/10.1016/j.aej.2020.11.035
https://doi.org/10.1023/A:1023684619933
https://doi.org/10.1023/B:AURC.0000023528.59389.09
https://doi.org/10.1103/PhysRevLett.64.821
http://journals.iaumajlesi.ac.ir/ms/index/index.php/ms/article/view/263


301 

 

A
 n

e
w

 d
y
n

a
m

ic
a
l 
b

e
h

a
vi

o
u

r 
m

o
d

e
li

n
g

 f
o

r 
a
 f

o
u

r-
le

ve
l 
su

p
p

ly
 c

h
a
in

: 
c
o

n
tr

o
l 
a
n

d
 s

y
n

c
h

ro
n

iz
a
ti

o
n

 o
f 

h
y
p

e
rc

h
a
o

ti
c

 

 
 Boubellouta, A., Zouari, F., & Boulkroune, A. (2019). Intelligent fuzzy controller for chaos 

synchronization of uncertain fractional-order chaotic systems with input nonlinearities. International 

journal of general systems, 48(3), 211-234. https://doi.org/10.1080/03081079.2019.1566231 

 Khan, A., Budhraja, M., & Ibraheem, A. (2019). Synchronization among different switches of four non-

identical chaotic systems via adaptive control. Arabian journal for science and engineering, 44(3), 2717-2728. 
https://doi.org/10.1007/s13369-018-3458-x 

 Rashidnejad, Z., & Karimaghaee, P. (2020). Synchronization of a class of uncertain chaotic systems 

utilizing a new finite-time fractional adaptive sliding mode control. Chaos, solitons & fractals: X, 5, 100042. 
https://doi.org/10.1016/j.csfx.2020.100042 

 Atan, Ö., Kutlu, F., & Castillo, O. (2020). Intuitionistic fuzzy sliding controller for uncertain hyperchaotic 

synchronization. International journal of fuzzy systems, 22(5), 1430-1443. https://doi.org/10.1007/s40815-

020-00878-x 

 Rossler, O. (1979). An equation for hyperchaos. Physics letters A, 71(2-3), 155-157.  

 Kapitaniak, T., & Chua, L. O. (1994). Hyperchaotic attractors of unidirectionally-coupled Chua’s 

circuits. International journal of bifurcation and chaos, 4(02), 477-482. 
https://doi.org/10.1142/S0218127494000356 

 Guang-Yi, W., Yan, Z., & Jing-Biao, L. (2007). A hyperchaotic Lorenz attractor and its circuit 

implementation. Acta physica sinica, 56(6), 3113-3120.      

 Yan, Z., & Yu, P. (2008). Hyperchaos synchronization and control on a new hyperchaotic attractor. Chaos, 

solitons & fractals, 35(2), 333-345. https://doi.org/10.1016/j.chaos.2006.05.027 

 Wang, B., Shi, P., Karimi, H. R., Song, Y., & Wang, J. (2013). Robust H∞ synchronization of a hyper-

chaotic system with disturbance input. Nonlinear analysis: real world applications, 14(3), 1487-1495. 
https://doi.org/10.1016/j.nonrwa.2012.10.011 

 Claypool, E., Norman, B. A., & Needy, K. L. (2014). Modeling risk in a design for supply chain 

problem. Computers & industrial engineering, 78, 44-54. https://doi.org/10.1016/j.cie.2014.09.026 

 Nasiri, G. R., Zolfaghari, R., & Davoudpour, H. (2014). An integrated supply chain production–

distribution planning with stochastic demands. Computers & industrial engineering, 77, 35-45. 
https://doi.org/10.1016/j.cie.2014.08.005 

 Fawcett, S. E., & Waller, M. A. (2011). Making sense out of chaos: why theory is relevant to supply chain 

research. Journal of business logistics, 32(1), 1-5. 

 Yingjin, L. U., Yong, T. A. N. G., & Xiaowo, T. (2004). Study on the complexity of the bullwhip 

effect. Journal of electronic science and technology, 2(3), 86-91. 

 Lei, Z., Li, Y. J., & Xu, Y. Q. (2006, October). Chaos synchronization of bullwhip effect in a supply chain. 

2006 international conference on management science and engineering (pp. 557-560). IEEE. 
DOI: 10.1109/ICMSE.2006.313955 

 Xu, X., Lee, S. D., Kim, H. S., & You, S. S. (2021). Management and optimisation of chaotic supply chain 

system using adaptive sliding mode control algorithm. International journal of production research, 59(9), 

2571-2587. https://doi.org/10.1080/00207543.2020.1735662 

 Kocamaz, U. E., Taşkın, H., Uyaroğlu, Y., & Göksu, A. (2016). Control and synchronization of chaotic 

supply chains using intelligent approaches. Computers & industrial engineering, 102, 476-487. 
https://doi.org/10.1016/j.cie.2016.03.014 

 Göksu, A., Kocamaz, U. E., & Uyaroğlu, Y. (2015). Synchronization and control of chaos in supply chain 

management. Computers & industrial engineering, 86, 107-115. https://doi.org/10.1016/j.cie.2014.09.025 

 Yan, L., Liu, J., Xu, F., Teo, K. L., & Lai, M. (2021). Control and synchronization of hyperchaos in digital 

manufacturing supply chain. Applied mathematics and computation, 391, 125646. 
https://doi.org/10.1016/j.amc.2020.125646 

 Qi, G., van Wyk, M. A., van Wyk, B. J., & Chen, G. (2008). On a new hyperchaotic system. Physics letters 

A, 372(2), 124-136. https://doi.org/10.1016/j.physleta.2007.10.082 

 

 

 

 

 

https://doi.org/10.1080/03081079.2019.1566231
https://doi.org/10.1007/s13369-018-3458-x
https://doi.org/10.1016/j.csfx.2020.100042
https://doi.org/10.1007/s40815-020-00878-x
https://doi.org/10.1007/s40815-020-00878-x
https://doi.org/10.1142/S0218127494000356
https://doi.org/10.1016/j.chaos.2006.05.027
https://doi.org/10.1016/j.nonrwa.2012.10.011
https://doi.org/10.1016/j.cie.2014.09.026
https://doi.org/10.1016/j.cie.2014.08.005
https://doi.org/10.1109/ICMSE.2006.313955
https://doi.org/10.1080/00207543.2020.1735662
https://doi.org/10.1016/j.cie.2016.03.014
https://doi.org/10.1016/j.cie.2014.09.025
https://doi.org/10.1016/j.amc.2020.125646
https://doi.org/10.1016/j.physleta.2007.10.082

