
 

   

 

 

1. Introduction  

Scheduling is an important task in production systems that aims to optimize one or more objectives 

under activity constraints and limited resources [1]. Its applications are ranging from production and 

manufacturing to transportation and logistics systems [2]. In fact, the purpose of production scheduling 

is to use various kinds of resources in an optimal way in a time based schedule. Development of an 

efficient scheduling method can results in productivity improvement of an organization [3]. One of the 

scheduling environment that is adaptable with most real world industry problems is the Hybrid Flow 

Shop (HFS) which is a difficult problem to solve [4]. A set of jobs flow through multiple stages in the 
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A B S T R A C T P A P E R    I N F O 

Scheduling is an important decision-making process that aims to allocate 

limited resources to the jobs in a production process. Among scheduling 

problems, Hybrid Flow Shop (HFS) scheduling has good adaptability with 

most real world applications including innumerable cases of uncertainty of 

parameters that would influence jobs processing when the schedule is 

executed. Thus a suitable scheduling model should take parameters 

uncertainty into account. The present study develops a multi-objective Robust 

Mixed-Integer Linear Programming (RMILP) model to accommodate the 

problem with the real-world conditions in which due date and processing time 

are assumed uncertain. The developed model is able to assign a set of jobs to 

available machines in order to obtain the best trade-off between two objectives 

including total tardiness and makespan under uncertain parameters. Fuzzy 

Goal Programming (FGP) is applied to solve this multi objective problem. 

Finally, to study and validate the efficiency of the developed RMILP model, 

some instances of different size are generated and solved using CPLEX solver 

of GAMS software under different uncertainty levels. Experimental results 

show that the developed model can find a solution to show the least 

modifications against uncertainty in processing time and due date in an HFS 

problem.  
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same machine order in a HFS problem. There are several parallel machines at each stage, which can be 

identical, uniform and unrelated. Jobs have to be processed by one of the machines at each stage, and 

the flow of jobs through the shop is unidirectional [5] and [6]. There are several research dealt with the 

HFS with identical machines [7]-[9]. Besides, the main objective functions of the reviewed HFS models 

are the maximum value, the average, the sum or the weighted sum of the average, the sum or the 

weighted sum of completion time of jobs [10]-[13], delays or tardiness of jobs [4] and [9], and flow 

time [14] and [15].  

To model the HFS problem, there are mainly six methods. Two methods are position-based approach, 

three methods are based on the precedence relation between operations and one is based on discrete 

time periods. The position-based methods assume that each machine (Wanger’s modelling [16]) or each 

stage (Naderi’s modelling (i) [12]) has several sections regarded as a processing position according to 

the time sequence. A schedule plan should arrange jobs at each processing position. Precedence 

relation-based methods consider: i) precedence relation between two adjacent or non-adjacent 

operations on the same machine (Manne’s modelling [17]), ii) only two adjacent operations (Guinet et 

al. [18]) on the same machine, and iii) precedence relation of all jobs at each stage (Naderi’s modelling 

(ii) [12]). The method based on the discrete periods (Bowman’s modelling) introduces binary decision 

variables. These variables determine whether an operation processes on one machine in a certain period. 

Obviously, the large number of binary decision variables makes solving the problem harder [19]. 

Recently, Meng et al. [20] further have studied the above mentioned models for the HFS problem where 

their objectives were to minimize the makespan. Based on the experimental results, they have shown 

that all six existing models are correct and only are formulated based on different ideas.  

The HFS problem under uncertainty has received much attention in the recent years [9], [10], [13], [15], 

[21], and [22]. Since real scheduling problems might be affected by various sources of uncertainties, 

ignoring them may lead to poor schedules [2] and [23]. Therefore, scholars have introduced different 

methods where uncertainty is directly taken into account. Some methods consider the random variables 

as input and some of them are worst-case approaches in which uncertain parameters belong to 

uncertainty sets. These frameworks are called respectively stochastic programming and Robust 

Optimization (RO). Due to hedging against adverse conditions of a system and being more insensitive 

against the future fluctuations of parameters, robust schedules are desirable from a practical perspective 

[2]. 

In the sequel, first we review some robust optimization related research. Li and Ierapetrito [24] 

addressed uncertainty in scheduling problem and studied three robust counterpart optimization 

formulations. They concluded that the most appropriate model to deal with uncertainty is the 

formulation proposed by Bertsimas and Sim (B&S) [37]. Rahmani and Heydari [14] studied the flow 

shop scheduling under unexpected arrivals of the new jobs and uncertain processing times. They 

proposed a new approach in which an initial robust solution was determined proactively against 

uncertain processing times at first. Then, an efficient reactive method was produced to deal with 

unexpected disruption. Based on their computational results, the proposed method could produce better 

solutions in comparison with the classical heuristic approaches. Nagasawa et al. [25] proposed a robust 

schedule to limit the peak power consumption by considering unexpected fluctuation in the processing 

time. They performed simulations in order to find the optimal amount of idle time, which leads to having 

longer makespan and decreasing the production efficiency. They also proposed a robust scheduling 

model that considered random processing times and the peak power consumption. Based on the results 

of experiments, the performance of the schedule produced by the proposed method was superior to the 
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initial schedule and to a schedule produced by another method. Thus, they concluded that the use of 

random processing times could limit the peak power. Shahnaghi et al. [26] provided a robust model for 

flow shop with batch processing by using B&S robust optimization approach in which the processing 

times and the size of jobs are uncertain. Based on the PSO algorithm results, B&S approach has better 

performance compared to the Ben-Tal model. Emami et al. [27] presented a robust optimization 

approach for the order acceptance scheduling problem with non-identical parallel machines based on 

the B&S approach. Job profits and the processing times considered random parameters. Hamaz et al. 

[28] applied the B&S approach to formulate the scheduling problem with uncertain processing times as 

a two-stage robust optimization problem. Ding et al. [29] studied the problem of program performance 

scheduling with accepting strategy under uncertainty of actual situation. This paper built a min-max 

robust optimization model based on B&S approach to minimize the performance cost and determine 

the sequence of the programs. Jamili [30] intended to deal with a new variant of job shop scheduling 

problem under uncertain processing times. In this research, a robust model was proposed by applying 

the B&S approach. Next, some algorithms were employed to solve the practical cases that were 

demonstrated as a proof of the effectiveness of the new approach. Bougeret et al. [2] studied the 

scheduling with budgeted uncertainty on a single machine that minimizes the makespan on parallel and 

unrelated machines. The processing times could take any value in the budgeted uncertainty set 

introduced by B&S [2]. Goli et al. [31] proposed a novel Robust Mixed-Integer Linear Programming 

(RMILP) model for the flow shop scheduling problem with outsourcing option based on the B&S 

approach, which uncertain processing time is one of their assumption. The comparison analysis 

demonstrated the superiority of the proposed model against the previous non-linear programming model 

in the literature [31]. Table 1 also summarizes these researches. 

Table 1. Studies on the applying B&S approach to various scheduling problems. 

 

The present study applies the B&S robust optimization approach to an extended version of the HFS 

problem of Meng et al. [20] under uncertainty. This extended model considers the identical parallel 

machines and includes two uncertain parameters: processing time 𝑃𝑖𝑘 and due date 𝑑𝑖. Besides, we 

consider the total tardiness of jobs along with the makespan as a second objective function.  

The remaining part of this paper is organized as follows: Section 2 briefly discusses B&S robust 

optimization approach. In Section 3, the HFS model and its robust counterpart formulation are 

discussed. Since the proposed problem is a multi-objective one, Section 4 introduces the applied fuzzy 

goal programming approach for solving the MILP model. Section 5 presents the computational results, 

model validation and sensitivity analysis. Finally, Section 6 describes the conclusions and future 

research directions. 

2. B&S Robust Optimization Approach 

One of the widely used and reliable approaches for dealing with uncertainty is the so-called RO. It has 

been applied in different real world applications, see for example [31]- [33]. This approach is capable 

year Refrence  Problem Uncertain Parameters 

2019 Bougeret et al. [2] Single machine scheduling. Processing time. 

2019 Goli et al. [31] Flow shop scheduling. Processing time. 

2019 Jamili [30] Job shop scheduling. Processing time. 

2019 Hamaz et al. [28] Basic cyclic scheduling Processing time. 

2018 Ding et al. [29] Program performance scheduling. Actual situation strategy. 

2017 Emami et al. [27] Order acceptance scheduling. Job profits and the processing times. 

2016 Shahnaghi et al. [26] Flow shop. Processing times and the size of jobs. 
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to obtain a solution close to the optimal solution that is guaranteed to be feasible and good for all or 

most possible realizations of the uncertain parameters [34]. Applying RO to scheduling planning cause 

to generate more reliable schedule to minimize the effect of disruptions when the schedule is 

implemented [10]. Soyster [35] was the first who formulated robust linear optimization, but his model 

was too conservative [35]. Ben-Tal and Nemirovski [36] have introduced an efficient algorithm for 

modeling uncertainty of data based on ellipsoidal uncertainty sets. Being a conic quadratic problem, 

this formulation cannot be suitable for optimizing discrete problems. Bertsimas and Sim [37] have 

developed a different robust formulation that is linear, capable to control the level of conservatism and 

readily extends to discrete optimization problems. Based on the robust formulation of [37], we propose 

a robust HFS model under uncertain processing time and due date. In the sequel, first we review 

Bertsimas and Sim approach.  

Consider the linear optimization problem 

min
x
∑a0j̃xj,

j∈J

  

( ) 

s. t. 

  ∑aij̃xj
j∈J

≤ bi                    ∀ i ∈ I,  

lj ≤ xj ≤ uj                     ∀ j ∈ J. 

 

Let J denotes the set of coefficients 𝑎𝑖𝑗 , 𝑗 ∈ 𝐽 that are associated with parameter uncertainty, i.e. j ∈ J 

takes values according to a symmetric distribution with mean equal to the nominal value 𝑎𝑖𝑗̅̅̅̅  in 

interval[ 𝑎𝑖𝑗̅̅̅̅ − 𝑎𝑖𝑗̂  , 𝑎𝑖𝑗̅̅̅̅ + 𝑎𝑖𝑗̂ ]. The 𝑎𝑖𝑗 ̂ is known as perturbation of uncertain parameter. A parameter Γ 

that takes values in the interval [0, |𝐽|] is introduced to control the level of conservatism of the solution. 

The main idea is that only a subset of the coefficients 𝑎𝑖𝑗 , 𝑗 ∈ 𝐽 will usually change. Therefore, being 

protected against the fluctuations, B&S approach considers that ⌊𝛤⌋ of these coefficients are allowed to 

change, and one of the coefficient 𝑎𝑖𝑡 changes by( 𝛤 − ⌊𝛤⌋)𝑎𝑖𝑡̂. Based on this approach, the robust 

solution will be feasible if less than 𝛤 uncertain coefficients change. Furthermore, there is high 

probability that the obtained robust solution will be feasible even if more than 𝛤 change [37]. Based on 

this, the proposed Robust Linear Programming is developed as follows: 

 

 

 

 

 

 

Based on the Model (2), if 𝛤 is an integer, the constraint is protected by  

 𝛽(𝑥, 𝛤) = 𝑚𝑎𝑥
{𝑆∪{𝑡}|𝑆⊆𝐽,|𝑆|=⌊𝛤⌋ ,𝑡∈𝑆\𝐽} 

{∑ 𝑎𝑖𝑗̂|𝑥𝑗|𝑗∈𝑆 }; when 𝛤 = 0, the constraints turn to that of the nominal 

min t, 

∑a0j̅̅ ̅̅ xj
j∈J

+ max
{S∪{t}|S⊆J,|S|=⌊Γ⌋ ,t∈S\J} 

{∑a0ĵ|xj|

j∈S

+ ( Γ − ⌊Γ⌋)a0t̂|xt| } ≤ t, 

∑aij̅̅ ̅xj
j∈J

+ max
{S∪{t}|S⊆J,|S|=⌊Γ⌋ ,t∈S\J} 

{∑aiĵ|xj|

j∈S

+ ( Γ − ⌊Γ⌋)ait̂|xt| } ≤ bi ∀ i ∈ I. 

 

( ) 
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problem; if 𝛤 = |𝐽|, the Model (2) turns to Soyster’s method because it means that all of the coefficient 

𝑎𝑖𝑗  will change. Hence, the robustness of the approach against the level of solution conservatism can be 

adjusted by varying 𝛤 ∈ [0, |𝐽|]. Model (2) in the current form is nonlinear. To reformulate it as a linear 

model, the conservation function of 𝑖𝑡ℎ constraint is calculated for the given vector 𝑥∗: 

 

 

where it is equal to the objective function of the following linear optimization problem: 

 

 

 

 

The dual model of the above problem is: 

 

 

 

By strong duality, since Problem (4) is feasible and bounded for all 𝛤 ∈ [0, |𝐽|], then the dual Problem 

(5) is also feasible and bounded and their objective values coincide. So we have that 𝛽(𝑥∗, 𝛤) is equal 

to the objective function value of Problem (5).  

Now Model (2) can be reformulated as a linear optimization model as follows [37]: 

 

 

 

 

 

 

where 𝛤 shows the degree of conservatism.  

β(x∗. Γ) = max
{S∪{t}|S⊆J,|S|=⌊Γ⌋ ,t∈S\J} 

{∑aiĵ|x
∗
j|

j∈S

+ ( Γ − ⌊Γ⌋)ait̂|x
∗
t| } ≤ bi, ( ) 

β(x∗, Γ) =  max∑aiĵ|x
∗
j|

j∈J

Rij, 

∑Rij
j∈J

≤  Γ,        

0 ≤ Rij ≤ 1                    ∀j ∈ J. 

( ) 

min ∑ρij + ΓZi,

j∈J

                                                                         

ρij + Zi ≥ aiĵ|x
∗
j|                       ∀i. j ∈ J, 

ρij ≥ 0                                          ∀j ∈ J, 

Zi ≥ 0                                            ∀i. 

( ) 

𝑚𝑖𝑛 𝑡, 

∑a0j̅̅ ̅̅ xj
j∈J

+  Γ. Z0 +∑ρ0j
j∈J

≤ t, 

∑aij̅̅ ̅xj
j∈J

+  Γ. Zi +∑ρij
j∈J

≤ bi                 ∀i ∈ I, 

Zi + ρij ≥ aiĵxj                                            ∀j ∈ J . i ∈ I ∪ {0}, 

Zi. ρij ≥ 0                                                      ∀j ∈ J . i ∈ I ∪ {0}, 

( ) 
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3. Problem Statement  

Consider a set of n jobs (i=1, 2,…,n) that have to be processed at S stages in sequence. Each job i consists 

of a chain of operations. An operation should be processed at stage j (j=1, 2, …, S) for which there are mj 

(mj ≥ 1) identical parallel machines. At least one stage has at least two parallel machines. All jobs have 

the same machine sequence to be processed and there is a set of m (K=1, 2, …, m) total machines at all 

stages. Since all parallel machines within each stages are identical, the processing time of an assigned 

job to a machine does not depend on the specific machine (Fig. 1). 

 

 

 

 

Fig. 1. Hybrid flow shop scheduling problem. 

Wagner’s position-based modelling method [16] is applied in the present paper to develop an HFS 

model. Hence, we divided each machine into several processing positions according to the time 

sequence. One position cannot be assigned to more than one job simultaneously. A scheduling plan 

should arrange the jobs to processing positions of the machines. 

To develop the model, Table 2 and Table 3 show the assumptions and a description of the notations. 

Table 2. Assumptions. 

 

 

 

 

Number Description  

1 At least one stage has at least two parallel machines. 

2 All the machines have two modes (on and off mode). 

3 Machines are automatically operated and labor is not included. 

4 All machines are available at time zero. 

5 Parallel machines at each stage are unrelated. 

6 Parallel machines at each stage in terms of capacity, electricity consumption and processing speed, 

are identical. 

7 Parallel machines at one stage are independent of other stages. 

8 Each machine can only process one job at any time and when it is processing a job. 

9 Machines are always available. 

10 Breakdown and preventive maintenance are not considered. 

11 Preparation and movement time between machines are not considered. 

12 There are j different jobs. 

13 All jobs are available at time zero and jobs release times are zero. 

14 Job processing cannot be interrupted, until the completion of job. No interruption once a job has 

started (non-preemption). 

15 A job cannot be processed simultaneously on more than one machine. 

K1 

K2 

K3 

K5 

K4 

i1 

i2 

j1 j2 j3 

in 

Km 

js 
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Table 3. A description of notations used in all formulas. 

 

3.1. MILP Model 

We consider the following extended model of Meng et al. [20] that is bi-objective and takes into account 

uncertainty in processing times and due date: 

 

 

 

 

 

 

 

Where, 

the 

Objectives 

(7) and (8) 

are to 

minimize 

the 

makespan 

and total 

tardiness, 

Notation Description  

i, ii Jobs index. 

j, jj Stages index. 

k Machines index. 

p Positions index. 

n Number of jobs. 

s Number of stages. 

m Total number of machines. 

mj Number of parallel machines within stage j, mj ≥ 1. 

I Set of jobs where {1, 2,..., n}. 

J Set of stages where {1, 2,..., S}. 

Kj Set of parallel machines within stage j where {1,2,...,mj}. 

K Set of total machines where {1, 2,...,m}. 

P Set of positions of machine k where {1,2,...,n}. 

M A very large positive integer. 

pik processing time of job i on machine k. 

di Due date of job i. 

Zjk Parameter that is equal 1 if machine k is at stage j, and 0 otherwise. 

Bij Continuous variable that determines the starting time of jth operation of job i. 

Skt Continuous variable that determines the starting time of machine k in position t. 

Ti Tardiness of job i. 

Cmax The makespan. 

xik Binary variable that is equal 1 if job i is processed on machine k, and 0 otherwise. 

yikp Binary variable that is equal 1 if job i occupies position p of machine k, and 0 otherwise. 

Min Cmax,     ( ) 

Min ∑ Ti,
i

 ( ) 

S.t.   

∑ xi.k 

k∈Kj

= 1 ∀i. j, ( ) 

∑yi.k.p = xi.k 

p∈P

 ∀i. k ∈ K, ( ) 

∑yi.k.p ≤ 1   

i

 ∀k ∈ K. p ∈ P, ( ) 

∑yi.k.p ≥∑yii.k.p+1
ii

  

i

 ∀k ∈ K. p ∈ {1.2.… . n − 1}, ( ) 

Bi.j + ∑ Pi.kxi.k  

k∈Kj

≤ Bi.j+1 ∀i. 1 ≤ j ≤ s − 1, ( ) 

Sk.p + ∑Pi.kyi.k.p 

i

 ≤ Sk.p+1 ∀k ∈ K. 1 ≤ p ≤ n − 1,    ( ) 

Sk.p ≤ Bi.j  + M(1 − yi.k.p) ∀i. j. k ∈ Kj. p ∈ P, ( ) 

Sk.p ≥ Bi.j −M(1 − yi.k.p) ∀i. j. k ∈ Kj. p ∈ P, ( ) 
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respectively. Constraint (9) determine that each job cannot be assigned to more than one machine at 

each stage. The relation between the two decisions variables are defined by Constraint (10). Constraint 

(11) represent that any position of a machine processes exactly one job at a time. Constraint (12) 

guarantee that jobs assignment to the machine positions are in sequential order. That is, each position 

of machines can only be occupied when its previous position of the same machine is occupied. 

Constraint (13) are associated with the operation precedence relations. They guarantee that each 

operation of each job can be started only if its precedent operation has been completely finished at the 

previous stage. Based on the Constraint (14), each machine has to process at most one operation at a 

time. That is, for two adjacent operations assigned to the same machine, the succeeding operation can 

be only started when the precedent operation has been completely finished. Constraints (15) and (16) 

guarantee that the starting time for a position of a machine equals to the starting time of the operation 

arranged at this position. Constraint (17) calculate the makespan and Constraint (18) calculate the 

tardiness of each job. Constraints (19)–(20) also define the decision variables. 

3.2. Robust Formulation  

Suppose that Model (2) has two uncertain parameters  𝑝𝑖𝑘̃ ∈ [ 𝑃𝑖𝑘̅̅ ̅̅ − 𝑃𝑖𝑘̂   . 𝑃𝑖𝑘̅̅ ̅̅ + 𝑃𝑖𝑘̂  ] and 𝑑𝑖̃ ∈

[𝑑𝑖̅ −  𝑑𝑖̂.  𝑑𝑖̅̅ ̅ +  𝑑𝑖̂] where 𝑃𝑖𝑘̅̅ ̅̅  and 𝑑𝑖̅ are the nominal and 𝑃𝑖𝑘̂  and 𝑑𝑖  ̂are the perturbation value of these 

parameters. These parameters cause uncertainty in the Constraints (13), (14), (17) and (18). Constraints 

(13) and (17) contain  ∑ 𝑃̃𝑖.𝑘𝑥𝑖.𝑘𝑘∈𝐾𝑗
 . We consider parameter 𝛤 ∈ [0.𝑚𝑗]  to adjust robustness of the 

model against the level of conservatism of the solution. The uncertain coefficients set is also 𝐾𝑗 (𝑚𝑗 =

|𝐾𝑗|). Furthermore, Constraints (18) calculate the tardiness of each job i and contains 𝑑̃𝑖. Here also, we 

set parameter 𝛤′′  ∈ [0, 1]. Hence, the followings are the robust counterparts of the Constraints (13), (17) 

and (18) (based on Model (6)): 

 

Constraint (14) contain ∑ 𝑃𝑖.𝑘𝑦𝑖.𝑘.𝑝 𝑖  and parameter 𝛤′  ∈ [0. 𝑛]. The uncertain coefficients set is 𝐼 (𝑛 =

|𝐼|). In fact, by assigning the value to 𝛤. 𝛤′and 𝛤′′ in all the robust counterparts, a trade-off occurs 

Cmax ≥ Bi.S + ∑ Pi.kxi.k  

k∈KS

 ∀i, ( ) 

Bi.S + ∑ Pi.kxi.k  

k∈KS

− di ≤ Ti ∀i, ( ) 

Ti. Bi.j. Sk.p ≥ 0,  ( ) 

xi.k. yi.k.p ∈ {0.1}.  ( ) 

Bij + ∑ Pik̅̅̅̅ xik
k∈Kj

+ ∑ ρijk
k∈Kj

+ ΓZij  ≤ Bij+1                                ∀ i. 1 ≤ j ≤ s − 1, ( ) 

ρijk + Zij ≥ Pik̂xik                                                                                ∀ i. 1 ≤ j ≤ s. k

∈ Kj, 
( ) 

ρijk . Zij ≥ 0                                                                                ∀ i. 1 ≤ j ≤ s . k ∈ Kj, (  

Bis + ∑ Pik̅̅̅̅ xik
k∈Ks

+ ∑ ρisk
k∈Ks

+ ΓZis ≤ Cmax                                 ∀i, ( ) 

Bis + ∑ Pik̅̅̅̅ xik
k∈Ks

+ ∑ ρisk
k∈Ks

+ ΓZis − (di̅ − Γ
′′dî) ≤   Ti           ∀ i. ( ) 
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between the robustness and optimality of the problem. These parameters are determined by the decision 

maker and their values are dependent on the risk aversion and the importance of the constraint for the 

decision maker [32, 33]. Based on Model (6) that demonstrates the robust counterpart of a constraint 

(resulted of B&S approach), Constraints (26)-(28) enter the problem model instead of the Constraint (14) 

as follows: 

 

 

 

 

If the value of parameters Γ, 𝛤′and 𝛤′′  equal to 0, the robust problem reduces to the nominal problem. 

4. Multi Objective Optimization by Fuzzy Goal Programming 

One of the methods that is widely used in the multi-objective problems is goal programming that 

presents the efficient solution set. However, selection of the satisfactory solution among this set is not 

easy for the decision makers. Therefore, the Fuzzy Goal Programming (FGP) introduced by Narasimhan 

[38] applied by many researchers to solve multi-objective problems [39]-[43].  

Consider the following multi-objective model: 

 

 

Based on the idea of FGP, each objective 𝑓𝑖(𝑥) has an associated fuzzy goal which deviations of all 

goals should be minimized. The membership functions of each fuzzy goal represent the grade of 

membership of a goal in the fuzzy subset and FGP approach aims to minimize the deviational variables 

to achieve the highest degree of each membership goals and also the most satisfactory solution [39].  

The membership function of each goal is defined based on the Positive-Ideal Solution (PIS) and 

Negative-Ideal Solution (NIS), which respectively are the best possible value and the feasible worst 

solution of each objective function. Therefore, the satisfactory degree of 1 is assigned to the PIS as the 

most preferred value and NIS has the satisfactory degree of 0. Consider mi as the minimum value and 

Mi as the maximum value of objective 𝑓𝑖(𝑥). Since all objective functions of the developed MILP model 

in the present study are of minimization-type, mi is the PIS for each 𝑓𝑖(𝑥) and has the satisfactory degree 

of 1 and Mi is the NIS for each 𝑓𝑖(𝑥) and has the satisfactory degree of 0.  

It should be noted that if we define the membership functions of the deviations of the goals instead of 

the goals, the minimax FGP can be applied. Thereby, the objective function of FGP is minimization of 

the maximum of deviations. Based on this method, the difference between PIS (mi) and NIS (Mi) 

calculates the acceptable deviation from the goal. Then, the membership function can be shown as Fig. 

2 and presented by 

 

 

Skp +∑Pik̅̅̅̅ yikp
i

+∑ρikp
′

i

+ Γ′Zkp
′ ≤ Skp+1          ∀ k. 1 ≤ p ≤ n − 1, ( ) 

ρijk
′ + Zkp

′ ≥ Pik̂yikp                                                        ∀ i. j. 1 ≤ p ≤ n − 1, ( ) 

ρijk
′ . Zkp

′ ≥ 0                                                                       ∀ i. j. 1 ≤ p ≤ n − 1. ( ) 

Min ( f1(x). f2(x).… . fn(x)) 

x ∈ X.
 ( ) 
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Fig. 2. Membership function of deviations. 

Therefore, the multi-objective Model (29) can be defined as a single objective problem as follows: 

  

 

 

It can be clearly seen that if  𝑓𝑖(𝑥) → 𝑚𝑖, then 𝑑𝑖(𝑥) → 0 . The above model can be replaced by Model 

(32) which is linear: 

 

 

 

 

5. Computational Results 

To evaluate the efficiency of the developed model, some instances are generated. Initially, we solved 

the problem with the nominal values. Then, 𝛤 ∈ [0,𝑚𝑗], 𝛤
′ ∈ [0, 𝑛],  and 𝛤′′ ∈ [0, 1] are determined based 

on B&S approach. Finally, the perturbation value of uncertain parameter, i.e., the processing time and 

due date are defined as 𝑃𝑖𝑘̂ = 𝛼𝑃𝑖𝑘̅̅ ̅̅  and 𝑑𝑖̂ = 𝛽𝑑𝑖̅ (𝛼 and 𝛽 are predetermined). 

5.1. Design of Experiments 

The data required to create the problems are shown in Table 4. The characteristic of each problem is 

introduced by A-B-C-D, which shows, respectively, the number of jobs, the number of stages, the 

number of total machines and the number of machine positions. 

 

Table 4. Problems with nominal parameters values given to GAMS. 

μ(x)|fi =

{
 

 
   0                          fi(x) ≥ Mi

fi(x)−mi

Mi −mi
                   x ∈ X

1                           fi(x) ≤ mi

 .    ( ) 

min z = max{di(x): i = 1: n}, 

  di(x) =
fi(x) −mi

Mi −mi
 ;  i = 1.2.… . n.

x ∈ X

 

( ) 

𝑚𝑖𝑛 𝑍, 

𝑍 ≥
𝑓𝑖(𝑥) −𝑚𝑖

𝑀𝑖 −𝑚𝑖
 ;  𝑖 = 1.2.… . 𝑛.

𝑥 ∈ 𝑋

 

( ) 

μ(fi(x)) 

mi 
Mi 
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To solve both the deterministic and robust models of problems given in Table 3, CPLEX solver of 

GAMS software is used in a Laptop with Intel Core i7- 2.6 GHz processor and 8 GB RAM. Moreover, 

the maximum runtime of the solver is set to 2000 seconds. Table 5 shows the objectives and their 

deviations that have been obtained after solving the final developed model by applying FGP approach. 

The results are presented for the perturbation 𝛼 = 0.2 and 𝛽 = 0.1(Robust1) and 𝛼 = 0.3 and 𝛽 =

0.2 (Robust2). Moreover, we set Γ=1.5, 𝛤′ = 3 and 𝛤′
′
= 0.7.   

Table 5. Computational results. 

 

Figs. 3 (a)-3(c) also plot the objective values of the problems with these three levels of perturbations. It 

can be found that increasing the perturbation of uncertain parameters not only lead to increasing the 

objectives, but also has a stronger effect on Tardiness compared to C_max. In fact, these figures 

illustrate the sensitivity analysis of objectives to level of perturbation of the uncertain parameters. 

To compare the impact of uncertainty on scheduling plan, Figs. 4 and 5 show the Gantt charts of the 

obtained solutions for Problem 2 (7-2-3-7) with and without uncertainty of parameters. As can be seen, 

uncertainty not only leads to greater maximum of completion times (it is 42.5 when we do not consider 

the uncertainty and 54.6 when the uncertainty is considered), but also changes the assignment of jobs 

to machines and their sequential order. For example, at stage 1, job 5 is assigned to machine k1 without 

and to machine k2 with uncertainty. Moreover, this job is assigned to 2nd machine position without and 

3rd machine position with uncertainty. It should be noted that the developed robust counterpart 

Number of 

Instance 

Problem 

Characteristic 

Number of 

Machines per Stages 

Nominal 

Processing Times 

Nominal  

Due Dates 

1 5-2-3-5 2 

1 

[5-10] 

[4-6] 

U[10-30] 

2 7-2-3-7 2 

1 

[5-10] 

[4-6] 

U[20-50] 

3 8-3-5-8 2 

1 

2 

[20-70] 

[20-60] 

[10-40] 

 

U[100-500] 

Instance Objectives  Deterministic  Robust 1 

(𝛂 = 𝟎. 𝟐 𝛃 = 𝟎. 𝟏) 

 Robust 2 

(𝛂 = 𝟎. 𝟑 𝛃 = 𝟎. 𝟐) 

 Cmax  25  27.1  29.7 

 Tardiness  11.277  28.186  33.37 

1 Devation of Cmax  0.09  0.108  0.201 

 Devation of Tardiness  0.09  0.108  0.201 

        

 Cmax  39  42.127  48.605 

 Tardiness  11.2  18.683  47.610 

2 Devation of Cmax  0.154  0.162  0.194 

 Devation of Tardiness  0.132  0.111  0.194 

        

 Cmax  347.036  409.226  442 

 Tardiness  161.680  255.973  434.477 

3 Devation of Cmax  0.469  0.102  0.2 

 Devation of Tardiness  0.469  0.102  0.05 



51                 Robust multi-objective hybrid flow shop scheduling   

formulation in this paper is capable to guarantee the feasibility. Hence, a schedule plan is created so 

that the uncertainty of data leads to the least possible modifications. 

Fig. 3. The effect of perturbation of uncertain parameters on objective functions.  

 

 

 

 

 

 

 

  Fig. 4. The robust schedule of problem 2 without uncertainty of parameters. 

 

 

 

Fig. 5. The robust schedule of problem 2 with uncertainty of parameters. 

Besides the above experiments, the robust counterpart problem is solved for the different degrees of 

conservatism. The effect of changing the protection level on the objective function values for the 

problem 2 with Γ ∈ [0. 2], 𝛤′ ∈ [0. 7] 𝑎𝑛𝑑 𝛤′′ ∈ [0. 1] is illustrated in Fig. 6. As it can be found, tardiness 

objective function is more affected by changing the conservatism level. Hence, according to Fig. 6 (b) 

compared to the other charts, when protection level increases, the objective values increase more. That 

is, the more jobs (n) process with uncertain time, the larger the completion time (C_max) and the larger 

delay in due date (Tardiness). Moreover,  𝛤′′ is associated with due date based on which the tardiness 

objective function is claculated. So, different levels of this parameter strongly affects the tardiness 

compared to the C_max as shown in Fig. 6 (c). 
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Fig. 6. Objective values as a function of conservatism levels for Problem 2. 

For further sensitivity analysis and to have better understanding of the objective functions behavior, we 

compare the effect of robust optimization on the objective values of Problem 2 (7-2-3-7). The 

deterministic and robust models with 20% perturbation for all uncertain parameters (𝛼 = 𝛽 = 0.2) are 

solved. Table 6 shows the obtained objective values and deviations for three states: without any 

protection (Γ= 𝛤′ = 𝛤′′ = 0), with the maximum protection (Γ=2, 𝛤′ = 7 and 𝛤′′ = 1) and with the 

predetermined protection (Γ=1.5, 𝛤′ = 3 and 𝛤′′ = 0.7).  In the absence of protection of the processing 

time and due date, the values of C_max and Tardiness are 39 and 11.2. However, with maximum 

protection that turns to Soyster’s [35] method, the objective values is increased. Compared to the 

maximum protection, when we reduce the conservatism levels to a predetermined protection mentioned 

above, the objective values change and become better. In fact, reducing the conservatism level leads to 

improve the objective functions. As mentioned before, the FGP approach that is applied to solve this 

two-objective problem tends to minimize the deviations of ideal solution. Furthermore, we have three 

parameters as conservatism level with different range values. Therefore, it is reasonable that reducing 

all the conservatism levels simultaneously may affect the objective values in various behaviors. 

However, we can be sure that this final solution has the minimum deviation from the ideal solution for 

all objectives.  

Based on the above discussion, it is clear that changing the protection level effects the objective values. 

An important observation is that B&S formulation succeeds in reducing the price of robustness, that is, 

we do not heavily penalize the objective function value in order to protect ourselves against constraint 

violation. 

Table 6. Objective values for different degrees of conservatism. 

 

6. Conclusion  

One of the complicated scheduling problems that has good adaptability with real production systems is 

the HFS environment. This paper suggested a multi-stage HFS model under uncertain processing time 

and due date with objectives aim to minimize the total tardiness and makespan. The robust optimization 

Problem  Objectives  Deterministic  Predetermined 

Protection 

 Maximum 

 Protection 

7-2-3-7  Cmax  39  39.6  43.2 

 Tardiness  11.2  16.7  27.335 
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based on Bertsiams and Sim approach was applied in order to deal with the uncertainty and Fuzzy Goal 

Programming is also implemented to solve this multi-objective problem. Based on the computational 

results of solving three different-sized instance problems, this model was capable to find the satisfactory 

sequence of jobs for each machine at each stage so that the uncertainty of data leads to the least possible 

modifications. However, uncertainty changed the assignment of jobs to machines and their sequential 

order. Moreover, the larger the level of perturbation was, the larger objective function values of the 

solutions were. Increasing the degree of conservatism also made the objectives to become worse and 

effected the tardiness stronger than makespan. Besides, the total tardiness of jobs is more affected by 

changing the protection level of the due date than the processing time. It should be noted that the CPLEX 

solver of GAMS could solve the extended RMILP model of HFS for the small and medium size 

problems. It could obtain the satisfactory solution within the time limit and raise the lower bounds in 

order to prove the optimality of the solution.  

One may consider the followings as the future research directions:  

 Adding further conditions to the RMILP model such as sequence dependent setup time, precedence 

constraints between operations from different jobs, preemptions, machine break down, no-wait jobs, 

new job arrivals. 

 Extending the developed model to uniform and unrelated parallel machines. 
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