
  

 

 

 

1. Introduction  

The feasible shipment of the products to wholesalers or to warehouses is a common problem in 

companies. Such problem is called a transportation problem, which is a special case of the linear 

programming problems. The general model corresponds to the classical transportation problem, 

comprises of the objective function, supply constraints, demand constraints, and non-negativity 

constraints. However, if the decision variables which are the amounts of shipment have capacity 

constraints for various reasons such as capacity of tracks, warehouse capacity, etc., a capacitated 

transportation model is used. 

Capacitated transportation model occurs frequently in applications and it is important to be able to 

handle the capacity constraints efficiently. This kind of problem can be solved by simplex algorithm 

for bounded variables [1]. Various authors have studied balanced capacitated transportation problems. 

Kassay proposed an operator method for solving capacitated transportation problem [7]. Hassain and 

Zemel studied probabilistic analysis of capacitated transportation problem [6]. They assumed that the 

capacities are random variables, and proved asymptotic conditions on the supplies and demands which 

assure that a feasible solution exists almost surely. For studying other researches in this field, one can 

refer to [2, 8, 13]. 
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Dahiya and Verma considered a class of the capacitated transportation problems with bounds on total 

availabilities at sources and total destination requirements [3]. They obtained an equivalent balanced 

capacitated transportation problem for this class of problems.  There are several methods for 

constructing initial basic feasible solutions for transportation problem, i.e. allocating 1m n  basic 

variables which satisfy all constraint equations (e.g.  [4, 5, 10, 11]). In capacitated transportation, we 

have some extra capacity constraints, and the mentioned methods should be modified in order to encase 

these constraints. We present a modification of three well known methods. In these modified methods, 

size of the problem does not change, unlike [9] which added a row and a column to the transportation 

tableau. 

In Section 2, we describe the transportation model with bounds on variables and we give a necessary 

and sufficient condition which assures the feasibility of problem. Section 3 consists of three modified 

algorithms for constructing an initial basic feasible solution of the problem. Some examples show 

performance of these algorithms. In Section 4, we explain transportation simplex algorithm for bounded 

variables to solve one example of the previous section. Comparison the proposed algorithm with an 

existing algorithm is presented in Section 5.  Section 6 contains a short conclusion. 

2. Balanced Capacitated Transportation Model 

 Consider the following balanced transportation: 

where {1,2, , }I m  is the index set of m sources, {1,2, , }J n  is the index set of n destinations, 
ijx  

stands for the quantity transported from source i  to destination j , 
ijc  is the cost of transporting one 

unit between source i  and destination j , 0  ( )is i I   is the supply of source i , 0  ( )j Jd j   is the 

demand of destination j , 0ijl   and we assume 
i j

i I j J

s d
 

  . We also have 

, , ,ij j ij i ij j ij i

i I j J i I j J

l d l s u d u s
   

        to make the problem consistent. 

In order to solve problem (1), consider the equivalent transportation problem (2) as follows: 

where ,ij ij i i ij

i I j J j J

A c l s s l
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Clearly, corresponding to every feasible solution 
ijt  of problem (2), there exists a feasible solution 

ij ij ijx t l   of problem (1), and corresponding to every feasible solution 
ijx  of (2), there exists a feasible 

solution 
ij ij ijt x l  of problem (2). The value of the objective function of problem (1) at a feasible 

solution is equal to the value of the objective function of (2) at its corresponding feasible solution and 

conversely. Finally, there is a one-to-one correspondence between optimal solutions to (1) and optimal 

solutions to (2). Hence, instead of problem (1), we can solve problem (3) as follows: 

Lemma 1 provides a necessary and sufficient condition for problem (3) to be feasible. 

Lemma 1.  Problem (3) is feasible if and only if 
i j

ij

s d
u

d
  for all i I and j J , where

i j

i I j J

d s d
 

   . 

proof. Suppose that 
i j

ij

s d
u

d
  for all i I and j J . Set 

i j

ij

s d
x

d
 , we have 

ij i

j J

x s


  for all i I , 

ij j

i I

x d


  for all j J  and 0 ij ijx u  , so 
ijx  is a feasible solution for (3). Conversely, suppose by 

contradiction that ( , ) ,     . .     .
i j

ij

s d
i j I J s t u

d
    We have ,

i j

j ij j

i I i I

s d
d u d

d 

    and this is a 

violation. So, we should have 
i j

ij

s d
u

d
  for all i I and j J .    

Consider a feasible (3) in which the condition stated in lemma 1 is hold. Since (3) is bounded, there 

exists at least one optimal solution [1]. We use simplex algorithm for bounded variables to find this 

optimal solution. 

3. Finding an Initial Basic Feasible Solution 

To start the transportation simplex, a Basic Feasible Solution (BFS) is needed. There are several 

methods for obtaining a starting BFS of general transportation in which there aren't upper bounds on 

variables. In what follows we modify three of the existing methods to make them suitable for capacitated 

transportation. For a definition of basic feasible solutions of bounded linear programming, see [1]. 
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3.1. Modified Northwest Corner Method (MNCM) 

This algorithm has two phases: 

Phase 1: The algorithm begins with ˆˆ1 ,  1 ,  ,  i i j ji j s s d d    . 

Step 1:  

ˆˆmin{ , , }ij i j ijx s d u . 

ˆ ˆ .
ˆ ˆ .
i i ij

j j ij

s s x

d d x

 

 
 

Step 2: 

Case i: ˆˆ { , }ij i j ijx s d u  . 1i i   , j j . 

Case ii: ˆ ˆ{ , }ij j i ijx d s u  . i i , 1j j  . 

Case iii: ˆˆ{ , }ij ij i jx u s d  . In this case,
ijx  will be non-basic at its upper bound and we will have two 

new cells. 1i i   , j j and i i  , 1j j  . 

If  , i m j n  go to Step 3, otherwise go back to Step 1 (In case iii, the algorithm is repeated twice). 

Step 3: ˆˆmin{ , }mn m nx s d  (Note that ˆˆ
m ns d  since the problem is balanced). 

Remark 1: If in one iteration, a row and a column are both satisfied, we move to one of the cells 

( , 1)i j  or ( 1, )i j  arbitrarily. 

Remark 2: If in one iteration of the algorithm, we have one of these three cases: ˆˆ 0i js d  , 
î ijs u  or 

ˆ
j ijd u , degeneracy occurs. 

When Phase 1 terminates, the last obtaining variable is ˆˆ
mn m nx s d  . If mn mnx u , current solution is 

feasible otherwise we should go to Phase 2. 

Phase 2: Suppose that mn mnx u , this causes infeasibility and we should exit mnx from the basis. There 

exists a unique cycle for the cell ( , )m n ; all corners of this cycle are basic except for one. We update the 

values of the variables in this cycle by mn mnx u    according to the signs of the cells in the cycle (sign 

of the cell ( , )m n is negative; this sign changes to positive for the adjacent cell and so on). After updating 

the table, if feasibility holds (0 )ij ijx u  , we arrive at a basic feasible solution, if not we should repeat 

the above process. This process is similar to dual simplex method and since problem (3) is feasible and 

finite, at last a basic feasible solution will be obtained. 
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Remark 3: The above process can be done similarly if in one step 0.ijx   The only difference is that 

ijx   and the sign of the cells in the cycle starts from positive, since we should increase 
ijx to zero. 

To illustrate the algorithm, we operate it in two numerical examples. The first example goes to Phase 2 

and the second one stops at Phase 1. 

Example 1: Consider the following capacitated transportation problem: 

3 4

1 1
4 4 4

1 2 3

1 1 1
3 3 3 3

1 2 3 4

1 1 1 1

min   

    15,    25,    40,

10,    23,    22,    25,

ij ij

i j

j j j

j j j

i i i i

i i i i

z c x

subject to x x x

x x x x

 

  

   



  

   



  

   

 

 

where  

 

11 12 13 14 21 22

23 24 31 32 33 34

4 10 ,   5 15 ,  1  12 ,   3 14 ,  1  15 , 5 10,   
3 12 ,   0 10 ,   0 8 ,   2 14 ,   3 17 ,   0 15.

x x x x x x
x x x x x x

           
           

 

Values of , , ,ij ij ij i jc u l s d   are shown in Table 1 (
ijc  and 

ij iju l  are in the left corner and right corner 

of the cells, respectively). 

 Table 1. Values of , , ,ij ij ij i jc u l s d  . 

 

 

 

 

Applying (MNCM) yields the following iterations: 

Iteration 1: 
11 1 1

ˆˆmin{2,5,6} 2 , 2 2 0 , 5 2 3x s d        . The next cell is (2,1). 

Iteration 2: 
21 2 1

ˆˆmin{16,3,14} 3 , 16 3 13 ,  3 3 0x s d        . The next cell is (2,2). 

Iteration 3: 
22 2 2

ˆˆmin{13,11,5} 5 , 13 5 8 ,  11 5 6x s d        . The next cells are (2,3) and (3,2). 

Iteration 4.1:  
23 2 3

ˆˆmin{8,15,9} 8 , 8 8 0 ,  15 8 7x s d        . The next cell is (3,3). 

Iteration 4.2: 
32 3 2

ˆˆmin{35,6,12} 6 , 35 6 29 ,  6 6 0x s d        . The next cell is (3,3). 

Iteration 5: 
33 3 3

ˆˆmin{29,7,14} 7 , 29 7 22 ,  7 7 0x s d        . The last cell is (3,4). 

Iteration 6: 
34 3 4

ˆˆmin{22,22} 22 , 0x s d    . 

 1 2 3 4 Supply 

1 10           6 12           10 13        11 8         11 2 

2 15         14 18            5 12         9 16        10 16 

3 17           8 16           12 13        14 14        15 35 

Demands 5 11 15 22  
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The final obtained solution from Phase 1 of (MNCM) is presented in Table 2; basic variables are bolded. 

 Table 2. Obtained solution from Phase 1 of (MNCM). 

 

 

 

 

 

 

Since 34 22 15x   , this solution is not feasible and we should go to Phase 2. 

Phase 2: The circle corresponding to the cell (3,4) is {(3,4), (2,4), (2,3), (3,3)} and 7 . 

Updating variables in the circle yields 34 24 23 337, 7, 1, 14x x x x    , which is feasible. The 

obtained BFS is: 

 Table 3. Obtained solution from Phase 2 of (MNCM). 

 

 

 

 

 

22 345, 15x x  . Other nonbasic variables are zero. Since 33 3314x u  , we have degeneracy. The 

associated transportation cost is:  

(2 10) (3 15) (5 18) (1 12) (7 16) (6 16) (14 13) (15 14) 767z                  . 

Example 2:  Consider a balanced transportation problem with the same number of variables as the 

previous example. Values of ‎‎ ‎ ‎‎ ‎ ‎ ‎‎ ‎ ‎ij ij ij i jc u l s d  are stated in Table 4. 

 Table 4. Values of , , ,ij ij ij i jc u l s d   for Example 2. 

 

 

 

 

 

The final solution which is obtained from Phase 1 of (MNCM) is presented in Table 5; basic variables 

are bolded. Since 34 9 11x   , this solution is feasible and the algorithm stops at Phase 1. 
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1 

 

7 

  

6 

 

14 

 

 

 1 2 3 4 Supply 

1 2            10 3               7 4              6 1              9 12 

2 -1            5 1               9 3              8 2              7 18 

3 5             6 4               7 6            10 3             11 15 

Demands 5 20 10 10  
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 Table 5. Obtained solution from Example 2. 

 

 

 

 

 

 

The associated transportation cost is:  

(5 2) (7 3) (9 1) (8 3) (1 2) (4 4) (2 6) (9 3) 96z                   

3.2. Modified Least Cost Method (MLCM) 

This method usually provides a better initial basic feasible solution than the North-West Corner method, 

since it takes into account the cost variables in the problem. We should modify the original algorithm 

in order to deal with bounds of variables. Again the algorithm has two phases. 

Phase 1: The algorithm begins with ˆˆ  ,i i j js s d d  . 

Step 1: Determine cell ( , )i j with the smallest unit cost in the existing tableau. If this cell is not unique, 

choose one arbitrarily. Set ˆˆmin .,{ , }ij i j ijx s d u  

Step 2: 

Case i:  If ˆˆ { , }ij i j ijx s d u  , then the i -th row will be crossed out. 

Case ii:  If ˆ ˆ{ , }ij j i ijx d s u  , then the j -th column will be crossed out. 

Case iii:  If ˆˆ{ },ij ij i jx u s d  , then 
ijx will be nonbasic at its upper bound and we should continue 

searching the smallest unit cost in row i and column j . At last row i or column j  will be crossed out. 

ˆ ˆˆ ˆ   , .i i ij j j ijs s x d d x   Go back to Step 1 with the new tableau in which a row or a column is less 

compare with the previous tableau.  

Step 3:  When exactly one row or column is left, all the remaining variables are basic. We should have 

1m n  basic variables in total. 

Step 4:  Suppose that the last remaining cell is ( , )k l . Set ˆˆmin{ , }kl k lx s d ˆˆ( )k ls d . 

Remark 1: If in one iteration, a row and a column are both satisfied, i.e. ˆˆ 0i js d  , then only one of 

them will be crossed out. It is better to keep the row or column with the smaller 
ijc s. 
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Remark 2:  In case iii, updating îs  and ˆ
jd is repeated until one of them becomes zero. 

Like the (MNCM), if in one iteration ˆˆ 0i js d  , 
î ijs u or ˆ ,j ijd u degeneracy occurs. When Phase 1 

terminates, if kl klx u , current solution is feasible, otherwise we should go to Phase 2 which is exactly 

the same as Phase 2 of (MNCM).  

Now, we solve Example 1 by (MLCM). 

Example 3: Consider the capacitated transportation problem of Example 1. Applying (MLCM),  yields: 

Iteration 1: 14 8c   is the least unit cost. 14 min{2,22,11} 2x   , 
1 4

ˆˆ 0 ,  20s d  , cross out row 1. 

Iteration 2: 23 12c   is the least unit cost. 23 min{16,15,9} 9x   , 23x  becomes nonbasic at its upper 

bound and 
2 3

ˆˆ 7 ,  6s d  . The next cell with the least unit cost in row 2 and column 3 is 33 13c  . 

33 min{35,6,14} 6x   , 
3 3

ˆˆ 29, 0s d  .  Cross out column 3. 

Iteration 3:  34 14c   is the least unit cost. 34 min{29,20,15} 15x   , 34x becomes nonbasic at its upper 

bound,
3 4

ˆˆ 14 ,  5s d  . The next cell with the least unit cost in row 3 and column 4 is 24 16c  . 

24 min{7,5,10} 5x   ,
2 4

ˆˆ 2 ,  0s d  . Cross out column 4. 

Iteration 4: 21 15c  is the least unit cost. 21 min{2,5,14} 2x    , 
2 1

ˆˆ 0,   3s d   .Cross out row 2. 

Iteration 5: Row 3 is the last row, 31x and 32x will be basic. Since 32 31c c , we first determine. 

32 min{14,11,12} 11x   , 
3 2

ˆˆ 3 ,  0s d   and the last variable is 31 min{3,3} 3x   , 
3 1

ˆˆ   0s d  . 

Phase 1 terminates and we have 31 3 8x   , so the current solution is feasible and algorithm stops at 

Phase 1. The following table shows the result of this example. Basic variables are bolded. 

 Table 6. Obtained solution of (MLCM). 

 

 

 

 

 

 

The associated transportation cost is: 

(2 8) (2 15) (9 12) (5 16) (3 17) (11 16) (6 13) (15 14) 749z                   Which is less 

than the cost computed by (MNCM). 
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3.3. Modified Vogel's Approximation Method (MVAM) 

Vogel's Approximation Method generally yields an optimum or close to optimum solution. The only 

difference between (MVAM) and (MLCM) is in (MVAM) determining cell ( , )i j with the smallest unit 

cost is done in a row or column with the largest penalty, not in the entire tableau. This penalty is the 

difference between two smallest 
ijc 's in a row or a column. 

Example 4: Consider the capacitated transportation problem of Example 1. We explain the first 

iteration of (MVAM). iu  and 
jv  stand for penalty of row i and column j , respectively. 

Iteration 1: 1 2 3 1 2 3 42, 3, 1, 5, 4, 1, 6u u u v v v v       . Column  4  has the largest penalty. 

The cell with the smallest unit cost in column 4 is (1,4). 14 min{2,22,8} 2x   , 
1 4

ˆˆ 0, 20s d  . Cross 

out row 1. 

After completing Phase 1, we have the following BFS. This BFS is just like the BFS which was obtained 

from (MLCM). 

 Table 7. Obtained solution of (MVAM). 

 

 

 

 

 

 

4. Transportation Simplex for Bounded Variables 

The general steps that are taken in simplex method are: 

 Finding a starting basic feasible solution. 
 Computing 

j jz c for each nonbasic variables. 

 Determining the entering and the leaving variables. 

 Updating the basis. 

Step 1 was investigated in the previous section. Since for capacitated transportation some of the 

nonbasic variables may be at their upper bound, entering and leaving basis is a little different; but 

computing 
ij ij ijc c z   for nonbasic variables is done in a same way [1]. 

Determining entering variable 

Suppose that 1R is the set of indices of nonbasic variables at their lower bound and 2R is the set of 

indices of nonbasic variables at their upper bound. For determining entering variable, compute 

1 2( , ) ( , )max{max , max }.i j R ij i j R ijc c     
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If 0 , the current solution is optimal. For 0  suppose that ( , )k l  is the index for which the 

maximum is achieved. If 1( , )k l R then klx is increased from its current level of zero. If 2( , )k l R , then 

klx is decreased from its current level of klu . 

Determining leaving variable  

There exists a unique cycle starting from cell ( , )k l . All corners of this cycle are basic except for ( , )k l

. If 1( , )k l R , we allocate a positive sign to the cell ( , )k l . This sign changes to negative for the adjacent 

cell and so on. If 2( , )k l R , sign of the cell ( , )k l is negative and other signs change accordingly. Let 

1T  be the set of indices of basic variables in the circle which have positive signs and 2T be the set of 

indices of basic variables in the circle which have negative signs. Set 

1 21 ( , ) 2 ( , )min { }   ,    min { },i j T ij ij i j T iju x x     and compute 1 2min{ , , }.klu    

If 1   the associated basic variable leaves the basis and it will be nonbasic at its upper bound. 

If 2   the associated basic variable leaves the basis and it will become zero. 

If klu   the basis doesn't change and klx  is still nonbasic;  its bound changes from upper to lower or 

vice versa. Only the value of basic variables in the circle will change. 

Updating the basis  

 After determining the leaving variable, we should update the variables in the circle by  according to 

sign of the cells, i.e. 
ij ijx x    for ( , )i j  with positive sign and 

ij ijx x    for ( , )i j  with negative 

sign. 

When we update the transportation tableau, again 
ijc 's are calculated. This process is done until 0

and we get to optimality. 

Example 5:  Consider capacitated transportation of Example 1. We apply simplex algorithm starting 

from the solution of (MVAM). There are two methods for computing 
ijc  which is not included here 

(see [1]). 

Iteration 1: As you can see in Table 7, we have  

             1 21,1 , 1,2 , 1,3 , 2,2 , 2,3 , 3,4 .R R   

By computing 
ijc  for nonbasic variables, we have 11 12 13 22 23 343,   6,   10,   4,   1,   4.c c c c c c        

So max{ 3, 6, 10, 4,1, 4} 1         ,which is achieved in cell  2,3 . Hence 23x  is the entering variable 

and the corresponding cycle is         2,3 , 2,1 , 3,1 , 3,3 .  
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Since sign of the cell  2,3  is negative, we have 1 {(2,1),(3,3)}T   and  2 {(3,1)}T  ; also  

1 min{14 2,14 6} 8     , 2 3  . Thus min{8,3,9} 3    which is achieved in cell (3,1). 31x is the 

leaving variable and the new values of the variables in the cycle are  

23 21 31 339 3 6 , 2 3 5 , 3 3 0 , 6 3 9.x x x x             

The new solution is 

 Table 8. Optimal solution of Example 1. 

 

 

 

 

Iteration 2:  we have               1 21,1 , 1,2 , 1,3 , 2,2 , 3,1 , 3,4 .R R   

11 12 13 22 31 343,   5,   9,   3,   1,   3,c c c c c c        so max{ 3, 5, 9, 3, 1, 3} 1 0           . 

The algorithm stops and the current solution is optimal. The optimal transportation cost is: 

(2 8) (5 15) (6 12) (5 16) (11 16) (9 13) (15 14) 746.z                 

5. Comparison with a Least Cost Method 

At first, we state a summary of the classic least cost method for finding an initial feasible solution of 

capacitated transportation problem [9], then we solve an example by this method and our proposed 

algorithm. 

Finding an initial basic feasible solution 

 The cell with the minimum cost in the table is selected and assigned the maximum value possible. If this 

assignment fully satisfies either the row’s supply or the column’s demand, then the variable is called a 

basic variable. Otherwise, if the assigned value is limited with the upper bound value of the cell, then it 

is called a bounded variable. This step is repeated until there exists no possible assignment.  

 The table is checked to determine if all of the demands and supplies are fully satisfied. If this is not the 

case, then a row (row 0) and a column (column 0) are added to the transportation table. Suppose that 

cell ( , )k l  is the last cell in Step 1. A new table is formed with 0 0 1k lc c   and 0ijc   for other cells. 

The sum of the artificial variables is minimized by simplex method. This step is repeated until artificial 

variables leave the basis and a feasible solution for the original problem is achieved. 
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Example 6: Consider the following capacitated transportation problem. 

 Table 9. Values of , , ,ij ij ij i jc u l s d  . 

 

 

 

 

 

Applied to Table 9, the first step of the mentioned method yields the following assignments; in order 

32 20x   (basic), 
23 25x   (bounded), 

13 5x   (basic), 
34 5x   (basic), 

14 20x   (basic), 
24 10x   (basic), 

21 7x   (bounded). 

Since the second row and first column still have 8 units unassigned, the solution is not feasible.  

Iteration 1: The sum of artificial variables 20 01x x  should be minimized over the following table. 

Table 10. Transportation table of Iteration 1. 

 

 

 

 

 

 

 

 

 

 

 

Basic variables are bolded, 
ij iju l  s are in the right corner of the cells. All 

ijc  s are zero except for 01c   

and 20c  which are equal to 1.  iu  and 
jv  are calculated in the right and below of the table. Computing 

ijc  by MODI method yields  02 03 04 10 1 111 2 21 ,    1 ,    2 ,    0 ,    2,c c c c c c c         

22 23 30 31 321  0 ,     ,    2 ,    0.c c c c c       

2  , 31x  is the entering variable and the corresponding cycle is  

            3,1 , 3,4 , 2,4 , 2,0 , 0,0 , 0,1 . We have min{5,8} 5    and 34x  should leave the basis. After 

updating the variables in the cycle, we have the following table. 

 

 1 2 3 4 Supply 

1 10           12 5            13 6            5 7         25 25 

2 9             7 3              4 4          25 8         18 50 

3 8            14 2             20 7           10 6          9 25 

Demands 15 20 30 35  
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Table 11. Transportation table of Iteration 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iteration 2: 

02 03 04 10 12 21 22 23 30 33 31 411 ,  1 ,    1 ,    2 ,    ,    , 0 2   1c c c c c c c c c c c c                

  2  . 
11x  is the entering variable and the corresponding cycle is  

            1,1 , 1,4 , 2,4 , 2,0 , 0,0 , 0,1 .  We have min{3,8,20} 3   . After updating variables in the 

cycle, the new value of artificial variables 01x  and 20x  will be zero and we get to a feasible solution of 

the original problem which can be seen in Table 12. 21 7x   and 23 25x   are bounded variables. 

Table 12. Feasible solution of Least Cost Method. 

 

 

 

 

 

 

 

The associated transportation cost is: 

(3 10) (5 6) (17 7) (7 9) (25 4) (18 8) (5 8) (20 2) 566.z                   

Finding initial basic feasible solution by (MLCM) 

Phase 1 of (MLCM) method generates the following solution: 
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Table 13. Obtained solution of phase 1 of (MLCM) for example 6. 

 

 

 

 

 

 

Since
21 15 7x   , Phase 2 is performed. The circle corresponding to the cell (2,1) is {(2,1), (2,4), (1,4), 

(1,1)} and 8  . Updating variables in the circle yields 21 24 14 117, 18, 12, 8x x x x     which is 

feasible. The obtained BFS is: 

Table 14. Obtained solution from Phase 2 of (MLCM). 

 

 

 

 

 

 

The associated transportation cost is: 

(8 10) (5 6) (12 7) (7 9) (25 4) (18 8) (20 2) (5 6) 571.z                   

As it is evident from the above example, our proposed algorithm generates a feasible solution for 

capacitated transportation problem with less computations and without changing size of the problem. 

The mentioned Least Cost Method needs some simplex iterations to get to a starting feasible solution; 

but our proposed method obtains a feasible solution just by one or some updating steps in Phase 2. 

6. Conclusion 

Capacitated transportation problem is a special case of bounded linear programming problems.  It has 

many practical applications in various areas including inventory control, employment scheduling, 

telecommunication networks, and personnel assignment. In this research, we used three methods: 

Modified Northwest Corner Method (MNCM), Modified Least Cost Method (MLCM), and Modified 

Vogel's Approximation Method (MVAM) to find an initial BFS of this problem. For obtaining optimal 

solution of the problem, the simplex algorithm with detailed explanation used. All steps of our method 

operate directly on the table and we don't need to add any row or column to the tableau.  
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