
        Corresponding Author: jfea@aihe.ac.ir  

        10.22105/SA.2021.281500.1061      

Licensee System Analytics. This  article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

 
 

 

 

 

 

 

   Journal of Applied Research on Industrial Engineering 

www.journal-aprie.com 

             J. Appl. Res. Ind. Eng. Vol. x, No. x (2024) x–x. 

Paper Type: Original Article 

 

A Review of Methods for Detecting Multimodal 

Emotions in Sound, Image and Text 

Seyed sadegh,Hosseini 1,Mohammad Reza, Yamaghani1*  ,  Soodabeh, Poorzaker Arabani1 
1  Department of Computer Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran, sadeghhosseini@malayeru.ac.ir; 

O_yamaghani@liau.ac.ir, Arabani@liau.ac.ir. 
 

 

Citation: 

 

Received: ----- 

Revised: -----  

Accepted:--- 

LastName, Initial First Name., &  LastName,  Initial First Name. (2024).  
A review of methods for detecting multidimensional emotions in sound, 

image and text. Journal of applied research on industrial engineering, Volume 

(Issue), PP. 

Abstract 
Emotional computing synergizes the understanding and quantification of emotions, drawing on diverse data sources 

such as text, audio, and visual indicators. A challenge arises when attempting to discern authentic emotions from 

those concealed deliberately via facial cues, vocal nuances, and other communicative behaviours. By integrating 

multiple physiological and behavioural signals, more profound insights into an individual's emotional state can be 

achieved. Historically, research has predominantly concentrated on a singular facet of emotional computing. In 

contrast, our study offers an in-depth exploration of its pivotal domains, encompassing emotional models, Databases 

(DBs), and contemporary developments. We commence by elucidating two prevalent emotional models, followed by 

an examination of a renowned sentiment analysis DB. Subsequently, we delve into cutting-edge methodologies for 

emotion detection and analysis across varied sensory channels, elaborating on their design and operational principles. 

In conclusion, the fundamental principles of emotional computing and its real-world implications are discussed. This 

review endeavours to provide researchers from academia and industry with a holistic understanding of the latest 

progress in this domain. 

Keywords: Emotion recognition, Machine learning, Deep learning, Multimodal emotions, Dataset, Information fusion, Feature 
extraction. 
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1|Introduction    

Emotional computing, a term encompassing the recognition and analysis of human emotions [1], was 

introduced by Professor Picard in 1997 [2]. This concept emphasizes the computer's ability to understand, 

interpret, and react intelligently to human emotions [2], [3]. There is an increasing aspiration in applied 

research to develop cognitive and intelligent systems that recognize individual emotions and swiftly generate 

apt responses [4]–[6]. For example, smart vehicle technology may leverage real-time emotional state 

monitoring of the driver to mitigate potential accidents [7]. It can also be used in sports predictions [8]. 

Moreover, emotional computing plays a pivotal role in gauging sentiments across various social media 

platforms [9]. This has led many scholars [3], [10] to view emotional computing as instrumental in advancing 

human-centric artificial intelligence. The domain of emotional computing primarily bifurcates into Emotion 

Recognition (ER) and emotion analysis [11]–[14]. Psychological research highlights two prevalent theories for 

human emotion modelling: the discrete (or categorical) emotion model [15] and the dimensional emotion 

model [16], both essential for emotion quantification. ER targets the identification of specific human 

emotional states, including both primary and subsequent emotions [17]. Methods have been proposed for 

Visual Emotion Recognition (VER) [18], Audio Emotion Recognition/Speech Emotion Recognition 

(AER/SER) [19], and Physiological Emotion Recognition (PER) [20]. Conversely, sentiment analysis 

evaluates opinions, typically classifying them as positive, negative, or neutral, especially within social and 

marketing contexts [21], [22]. Notably, a framework using context-level attention was created to determine 

the overall emotion and detect specific ones within speech [23]. The public release of diverse Databases (DBs) 

has accelerated advancements in emotional computing, emphasizing both unimodal and multimodal DBs. 

Sentiment computing systems emerging from this development prominently incorporate Machine Learning 

(ML) and Deep Learning (DL) methodologies. Research indicates that in daily interactions, human emotions 

are mainly conveyed through facial expressions (55%), vocal nuances (38%), and verbal language (7%) [24]. 

For the context of this review, we categorize text, audio, and video signals as non-contact data sources. The 

vast data pool from uninhibited expressions on digital platforms allows researchers to pinpoint even nuanced 

emotions [25]–[27]. ER devoid of physical touch may not be wholly accurate as individuals can mask their 

genuine emotions [20]. Physiological signals like EEG and ECG offer more consistent real-time emotion 

predictions as these parameters are challenging to manipulate intentionally [28], [29]. Considering the intricate 

nature of human emotions [30], current research endeavours to discern multimodal emotions without physical 

intervention [31]. The synergy of text, audio, and visual modalities delivers richer information than individual 

sources [32], [33], mirroring our brain's multi-sensory data interpretation process. Advances in wearable 

sensors have facilitated ER based on multiple physiological signals. Combining non-contact and physiological 

methods can yield a comprehensive emotional computing framework, capturing even nuanced emotions [34], 

[35]. Crucially, choosing apt unimodal sentiment data and effective multimodal fusion techniques [36] is vital 

for effective sentiment analysis systems [37]. In general, the identification of emotions includes the following 

steps (Fig. 1). Herein, we offer a concise overview of multidimensional ER techniques (Fig. 2). 

Fig. 1. The workflow of a Multimodal Emotion Recognition (MER) system comprises three primary steps: 

1) extraction of multimodal features, 2) fusion of multimodal information, and 3) design of the emotion 

classifier. 
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Although abundant literature exists on emotion computing, many studies predominantly focus on non-

physically invasive ER. Earlier works have touched upon Facial Expression Recognition (FER) [38]–[41], ML 

applications in sentiment analysis [42], and DL approaches for SER [43].  

However, limited comprehensive reviews exist on physiology-based ER and the fusion of physical and 

physiological data.  

Most extant reviews adopt a niche focus, occasionally bypassing developments in DL-based sentiment 

recognition and multimodal sentiment analysis. Many lack insights into the efficacy of contemporary methods 

in emotion detection. This paper seeks to fill these gaps, presenting an all-encompassing perspective on 

emotional computing, discussing a diverse array of methods, findings, and positing future research 

trajectories. Specifically, we confine our exploration to multimodal emotional computations and their 

classification techniques. Our review encompasses scholarly articles from conferences and journals, as 

represented in Fig. 2, facilitating the reader's journey through this intricate research domain. We provide an 

exhaustive classification of state-of-the-art Sentiment Computing methods, highlighting both ML and DL 

techniques and elucidating their applicability. We introduce DBs that are pivotal for sentiment computing and 

offer a comparative analysis of selected methodologies. Finally, we delve into the multifaceted impacts and 

practical applications of emotional computing, charting potential future research avenues in emotion 

identification and analysis. 

 

Fig. 2. This paper provides a classification of non-contact emotional calculations based 

on existing methods and involving combinations of audio, text, and image. 

The structure of this article is as follows: 

Section 1 provides an introduction. Section 2 reviews the literature, highlights relevant studies and outlines 

the scope of the field. Section 3 evaluates both discrete and dimensional emotional models. Section 4 reviews 

information integration strategies in MER. Section 5 deals with the studies conducted in MER, and in part 6, 

MER DBs are introduced. Evaluation criteria and accuracy of models are presented in Section 7, and the 

importance of ethics in identifying emotions is mentioned in Section 8. Section 9 summarizes this article, 

while Section 10 provides final tips and suggestions. To increase brevity and clarity, a table of abbreviations 

is presented in Table 1. 

1.1|Review Methodology 

This section offers an in-depth overview of the academic research conducted in the field of ER, providing a 

systematic review of the latest findings and delineating current research areas. 
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1.2|Search Methodology 

To orchestrate the Systematic Literature Review (SLR), a set of search queries was carefully selected, 

encompassing 'ER', 'MER', as well as 'ML' and 'DL'. The exploratory phase commenced with an automated 

query on Google Scholar for pertinent conference and journal publications. This phase was succeeded by 

meticulous manual searches through specialized DBs, engaging composite search strings such as "ER" 

conjoined with either "DL" or "ML" and similarly structured queries specifically targeting 'MER'. 

1.3|Criteria for Inclusion and Exclusion 

Specific criteria were meticulously applied to ascertain the relevance of primary research works in the SLR. 

The data considered were sourced from scientific texts written in English and published in digital platforms 

such as IEEE, ACM, ScienceDirect, and Springer between 2013 and 2023, predicated on inclusion and 

exclusion criteria. Inclusion criteria encompassed the availability of the complete document for download, 

English language text, publication between 2013 and 2023, relevance to the research questions, coverage of 

ER methods, particularly focusing on multimodal emotion detection using DL, and accessibility via high-

resolution digital DBs. We used the following keywords: DL, ER, text, visual, speech, audio, multimodal, 

trimodal, and bimodal. Exclusion criteria involved the unavailability of the complete document, documents 

in a language other than English, and publications outside the specified time frame. 

1.4|Selection of Studies 

Following the prescribed search strategy and the application of inclusion and exclusion criteria, around 640 

research papers were identified as relevant, with 230 publications and conference articles being prioritized 

following a comprehensive review.  

1.5|Research Inquiries 

This research aims to investigate the following inquiries: 

I. What are the methodologies for enhancing recognition accuracy in emotion classification? 

II. How can different emotions be analyzed and classified effectively? 

III. What techniques in data fusion contribute to enhanced accuracy in recognizing emotions? 

IV. What tools and technologies are suitable for acquiring data in ER? 

V. What are the existing ER datasets and their key characteristics? 

2|Related Works 

In this section, we provide an analysis of scholarly articles on affective computing published between the 

years 2013 and 2023, focusing on non-contact methodologies. Table 2 offers a comprehensive summary of 

these recent reviews. The articles are compared based on criteria such as sentiment model, DB, multivariate 

combination method, and Quantitative Evaluation (QE). As evidenced in Table 2, the various facets of 

affective computing are systematically delineated.  

2.1|Investigations Pertaining to Non-Contact Physical Sensing Methods 

In studies pertaining to ER without direct physical interactions, the predominant approaches encompass 

visual, textual, and auditory techniques [12]. Within the visual domain, a significant portion of the literature 

is dedicated to FER [38], [39], [41], [44], Facial Micro-Expression Analysis (FMEA) [40], and 3D FER [41]. 

Poria et al. [45] further delved into discerning emotional representation from body gestures and subsequently 

embarked on a multimodal approach to ER, integrating both speech and combined facial and body 

movements. Within the textual realm, factoring in the underlying emotions embedded in dialogue can 

augment sentiment analysis and emotion detection efforts [42], [43], [46]–[48]. To address inherent challenges 
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in emotion-centric AI platforms. Bota et al. [49] introduced a DL-based adversarial training paradigm 

leveraging three distinct physical signals. Conversely, Rouast et al. [12] examined the potential efficacy gains 

achieved by detecting the influence of multimodality across various fusion paradigms, juxtaposing them 

against singular modality analysis with a focus on multimodal fusion.  

Table 2’s reviews on emotion detection devoid of physical interaction predominantly highlight the use of DL 

techniques, underscoring its appropriateness for this domain. However, the current literature does not fully 

encapsulate the cutting-edge advancements and scholarly accomplishments in DL-driven emotional 

computing. 

Table 1. List of abbreviations used in this article. 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

2.2|An Examination of Emotion Detection through Physiological Signal Analysis 

In the realm of PER, advances have been facilitated through the incorporation of embedded devices that 

capture physiological signals, a process termed physiological coupling. García-Martínez et al. [50] provided an 

exhaustive review of the utilization of ML in ER by examining various physiological signals, offering insights 

into core principles, historical context, methodologies, and forthcoming advancements. Ekman [51] delved 

into the realm of nonlinear EEG-based ER and pinpointed specific nonlinear markers for prospective 

scholarly inquiries. Kim and André [29] undertook a systematic review of EEG-based ER literature spanning 

from 2009 to 2016, paying particular attention to aspects such as feature representation, classification 

techniques, and performance metrics. As delineated in Table 2, every review centred on physiological-based 

ER has scrutinized ML methodologies in both discrete and dimensional emotional frameworks. Nonetheless, 

a singular study has delved into the exploration of various DL strategies. This present review encapsulates the 

pivotal contributions of both ML and DL paradigms to the evolution of PER in the academic landscape. 

Acronym Full Form Acronym Full Form 

TSA  Textual Sentiment Analysis  SER  Speech Emotion Recognition  
FER  Facial Expression Recognition  FMER  Facial Micro-Expression Recognition  

4D/3D 
FER  

4D/3D Facial Expression Recognition  EBGR  Emotional Body Gesture Recognition  

EEG  Electroencephalogram  ECG  Electrocardiography  
EMG  Electromyography  EDA  Electro-Dermal Activity  
ML  Machine Learning  DL  Deep Learning  
GMM  Gaussian Mixture Model  MLP  Multi-Layer Perceptron  
NB  Naive Bayesian  LSTM  Long-Short-Term Memory  

LDA  Linear Discriminant Analysis  DCNN  Deep Convolutional Neural Network  
DT  Decision Tree  CNN  Convolutional Neural Network  
KNN  K-Nearest Neighbors  RNN  Recurrent Neural Network  

HMM  Hidden Markov Model  GRU  Gated Recurrent Unit  
ANN  Artificial Neural Network  AE  Auto-Encoder  
PCA  Principal Component Analysis  GAN  Generative Adversarial Network  

MLP  Multi-layer Perceptron  VGG  Visual Geometry Group  
SVM  Support Vector Machine  DBN  Deep Belief Network  
RBM  Restricted Boltzmann Machine  HAN  Hierarchical Attention Network  

RBF  Radial Basis Function  ResNet  Residual Networks  
FC  Full-Connected  GAP  Global Average Pooling  
MKL  Multiple Kernel Learning  AUs  Action Units  
RF  Random Forest  AAM  Active Appearance Model  
ICA  Independent Component Analysis  LFPC  Logarithmic Frequency Power Coefficient  
BoW  Bag-of-Words  ROIs  Regions of Interest  
LBP-TOP  Local Binary Pattern from Three 

Orthogonal Planes  
MFCC  MEL Frequency Cepstrum Coefficient   
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Table 2. An overview of reviews related to emotional computing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3|Exploring Fusion Methods without Physical-Physiological Connections for 

Emotion Analysis 

In recent years, there has been a discernible inclination towards employing signals devoid of direct physical-

physiological links for the analysis of emotions. Shoumy et al. [13] conducted a comprehensive review of DL-

oriented methods for human ER that harness audio, visual, and physiological signals to extract spatial, 

temporal, and joint feature representations. Subsequently, Poria and Cambria [20] shed light on various 

methodologies pertaining to feature extraction, dimensionality reduction, and the employment of ML-driven 

classifiers, particularly within the realm of multi-channel EEG ER.  

This study further delineated recent advancements in MER utilizing ML or DL techniques. Corneanu et al. 

[17] offered insights into multimodal datasets, emphasizing feature extraction techniques based on EEG, 

imagery, audio, and textual information while also exploring multimodal fusion tactics and real-time ER 

procedures. Ekman [14] undertook a systematic review of diverse frameworks and methodologies that utilize 

textual, audio, visual, and physiological signals, providing a thorough performance evaluation. Their work 

culminated in a discussion on the myriad applications within sentiment analysis, subsequently highlighting 

emerging trends and prospective avenues of research. The seminal contributions delineated in Table 2 delve 

into the core tenets of sentiment computation, encompassing sentiment modelling and both unimodal and 

multimodal detection approaches via ML and DL paradigms. However, a critical appraisal of the existing 

literature reveals a palpable void in terms of comprehensive comparative analyses within unimodal and 

multimodal sentiment analysis domains.  

3|Emotional Models 

In the realm of emotional computing, it is imperative to define and understand the concepts of emotions or 

feelings. The foundational notion of emotion was pioneered by Ekman [51], [53]. While experts from diverse 

disciplines, including neuroscience, philosophy, and computer science, have endeavoured to categorize 

emotions through different lenses [54], a universally agreed-upon model of emotion remains elusive. 

Author Emotion Model  
DB 

Modality Multimodal Fusion Method  
QE Dis Dim T A V VA TA VAT ML DL 

Reviews on Physical-Based Affect Recognition 

[12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
[38] ⨯ ⨯ ✓ ⨯ ⨯ ✓ ⨯ ⨯ ⨯ ✓ ✓ ✓ 
[40]  ⨯ ⨯ ✓ ⨯ ⨯ ✓ ⨯ ⨯ ⨯ ✓ ✓ ✓ 
[45]  ✓ ✓ ✓ ⨯ ✓ ✓ ✓ ⨯ ⨯ ✓ ✓ ⨯ 

[49]  ⨯ ⨯ ⨯ ✓ ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ 

[42] ⨯ ⨯ ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ✓ 
[46] ✓ ✓ ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ 
[47] ✓ ✓ ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ⨯ 

[43] ⨯ ⨯ ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ 
[48] ✓ ✓ ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ⨯ 

[41] ⨯ ⨯ ✓ ⨯ ⨯ ✓ ⨯ ⨯ ⨯ ✓ ✓ ✓ 

Reviews on Physical-Physiological Fusion for Affective Analysis 

[13] ✓ ✓ ✓ ⨯ ✓ ✓ ✓ ⨯ ⨯ ✓ ✓ ✓ 
[20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⨯ ⨯ ✓ ✓ ✓ 
[17] ⨯ ⨯ ✓ ✓ ✓ ✓ ✓ ⨯ ✓ ✓ ✓ ✓ 
[14] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⨯ ✓ ✓ ✓ ✓ 
[52] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
*Multimodal Fusion: VAT=Visual-Audio-Textual, VA=Visual-Audio, TA=Textual-Audio,  
P-P=Physical-Physiological.   
Modality: V=Visual (Facial expression, Body gesture), A= Audio (Speech), T=Textual 
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Notwithstanding, two predominant emotion models are commonly employed in emotional computing: the 

discrete emotion model [53] and the continuous emotion model [16], [55]. 

3.1|Discrete Emotion Model 

In the domain of emotional study, the discrete emotion paradigm, often referred to as the categorical emotion 

paradigm, classifies emotions into distinct categories. Among the most prominent discrete emotion 

frameworks are Ekman's Six Basic Emotions [53] and Plutchik's Emotion Wheel model [56], as depicted in 

Fig. 3(a) and Fig. 3(b), respectively. The foundational model by Ekman [51] and its subsequent derivatives [57], 

[58] have gained considerable traction within the ER scholarly community [59], [60]. These six fundamental 

emotions, typically encompassing anger, disgust, fear, happiness, sadness, and surprise, are conceptualized 

based on several criteria [53]: 

I. Such emotions are rooted in human instinct. 

II. Given identical circumstances, individuals tend to manifest analogous basic emotions. 

III. It's posited that people convey these core emotions with congruent semantic interpretations. 

IV. There's a contention that these quintessential emotions manifest in a consistent expression pattern across 

diverse individuals. 

Ekman's foundational model underscores the universality of human emotions across ethnicities and cultural 

spectra. However, nuances might arise in the perception of these basic emotions contingent on cultural 

contexts, and the amalgamation of various basic emotions can give rise to intricate or composite emotional 

states [15]. Conversely, Plutchik's wheel-based paradigm [56] encompasses eight foundational emotions: 

happiness, trust, fear, surprise, sadness, anticipation, anger, and disgust. This model elucidates the 

interconnections among these emotions, as visualized in Fig. 3(b). To illustrate, happiness and sadness are 

posited as antithetical emotions, while anticipatory sentiments could metamorphose into states of alertness. 

This concentric representation, frequently denoted as the component model, predicates the notion that 

central emotions exhibit heightened intensity, whereas peripheral emotions reflect their respective intensity 

gradient. Such discrete emotions are typically segmented into three overarching polarities: positive, negative, 

and neutral, which are instrumental in sentiment analysis. To enhance the precision in emotion delineation, 

discrete emotion management [61] has been proposed, emphasizing multilayered emotion analysis, 

subsequently augmenting classification efficacy. 

3.2|The Lateral Emotions Model 

In addressing the constraints of discrete emotion paradigms, numerous scholars have gravitated towards the 

idea of a continuous multidimensional framework. The Pleasure, Arousal, and Dominance (PAD) model [16], 

illustrated in Fig. 4, serves as a salient example. This model mirrors Mehrabian's tripartite spatial theory of 

emotions [62] by encapsulating three distinct dimensions: 

 

          

 

 

 

 

a. 

 

 



 A Review of Methods for Detecting Multidimensional Emotions in Sound, Image and Text  8

b.  

Fig. 3. Two distinct models for emotion computing: a six fundamental emotional 

models [15], illustrated through emojis; b) partial models, such as Palachik's emotion 

wheel model [56]. 

The Pleasure dimension (often referred to as Valence) spans the emotional spectrum from profound distress 

to euphoria. The Arousal (or Activation) dimension quantifies the extent of physiological activity and 

cognitive alertness. The Mastery (or Attention) dimension conveys the sentiment of either being swayed by 

external stimuli, including individuals or having an impact upon them.  

Dabas et al. [63] posit that the PAD model's pleasure and arousal dimensions can encapsulate the vast array 

of emotional nuances. Consequently, Plutchik [55] introduced a circular framework hinging on arousal 

dynamics to depict intricate emotional states. This design delineates a continuous, bidimensional emotional 

realm demarcated by axes of Valence (ranging from pleasantness to its antithesis). The circular construct is 

divided into four sectors. The inaugural sector, signifying positively-valenced activation, aligns with emotions 

akin to joy. Contrastingly, the third sector, marked by subdued arousal and detrimental sentiments, aligns with 

despondency. The penultimate quadrant, epitomizing heightened arousal juxtaposed with negative 

sentiments, resonates with anger, while the concluding quadrant, characterized by minimal arousal and 

positive sentiment, embodies tranquillity [64]. This figure presents the Pleasure-Arousal-Dominance (PAD) 

model [62]. 

 

 

 

 

 

 

 

 

Fig. 4. Subsequent models of emotions. 
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4|Multimodal Information Fusion Strategies for MER 

Domains and modalities are crucial in the field of ER. Although each domain and modality has unique 

features, there are also similarities and differences among them. All domains and modalities require data 

collection, processing, feature extraction, and classification. Additionally, they share the common objective 

of recognising and interpreting human emotions. However, it is important to note that there are differences 

in data collection methods, feature extraction techniques, and classification algorithms across different 

domains and modalities. Each domain and modality presents its own unique set of challenges and limitations 

that researchers must address. Therefore, it is crucial to have a clear understanding of the similarities and 

differences among domains and modalities in order to develop effective ER systems. Emotions are complex 

phenomena that involve various physiological, behavioural, and cognitive processes. ER systems that rely on 

a single modality or domain may not be sufficient to capture the complexity of emotions. MER, which 

combines information from multiple modalities or domains, has been shown to improve the accuracy and 

robustness of ER systems. 

Additionally, MER can provide a more comprehensive understanding of emotions by capturing different 

aspects of emotional expression. For instance, facial expressions can convey the valence and intensity of an 

emotion, while speech can provide information about the content and context of an emotion. Moreover, 

combining modalities can help overcome the limitations and challenges of individual modalities, such as noise, 

variability, and ambiguity. Therefore, MER has become an active and promising research area in the field of 

affective computing. This section provides an overview of MER, including the primary fusion techniques 

used in this area of research, as well as a review of recent studies. Multimodal learning can change various 

modal information by jointly modelling various modal data and identifying the internal association between 

them. Creating a shared representation space is critical because associating diverse modes is the fundamental 

challenge of multimodal learning. Two basic techniques for creating a common representation space are 

fusion and alignment [65]. 

4.1|Information Fusion 

Multimodal fusion combines information from multiple modalities to enhance its accuracy. Multimodal 

alignment is used to find the relationship between different modalities of information. This technology is 

employed in the study of ER to combine data such as audio and video, which increases recognition accuracy. 

Zhang et al. [65] identified three fusion methods in ER: feature-level fusion, decision-level fusion, and model-

level fusion.            

The most commonly used method in MER, according to [66], is feature-level fusion, which involves 

combining the features extracted from each modality into a new feature vector. The feature vector for 

emotion identification is often of a larger dimension, which is then reduced using dimension reduction 

methods. A classifier is then used to identify the emotion. To fuse the feature layer, the relationships between 

various modalities are exploited. However, this method does not take into account the distinction between 

the emotional characteristics of different modalities. Achieving time synchronisation between multiple 

modalities is also challenging. Learning the relevance across modalities has become increasingly challenging 

due to the diversity of modalities [11]. 

The decision-level fusion method treats each modality independently before combining the results [65]. This 

involves classifying features from different modalities using their respective classifiers. The final result's 

recognition accuracy is improved by combining the results of different UERs using an algebraic combination 

rule [66]. Poria et al. [11] emphasize the difference between various features in decision-level fusion and 

suggest applying the most suitable classifier for each modality. However, this approach does not consider the 

relevance between features, and the learning process is time-consuming. 

Model-level fusion is another option. Jiang et al. [16] reviewed the use of fusion methods in multimodal 

recognition and found that model-level fusion is less commonly used than feature-level and decision-level 
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fusion methods. Model-level fusion relies on data correlation across several modalities and a relaxed data 

fusion approach. The realization of model-level fusion depends on the models used. The results of recognition 

are obtained through a multimodal information-combining model that learns the multimodal interaction 

within the model and builds a shared space of representation. 

4.2|Multimodal Fusion Strategies for MER 

The fusion of diverse modalities holds pivotal importance in MER. Common multimodal information fusion 

strategies encompass feature-level fusion, decision-level fusion, and model-level fusion. Notably, model-level 

fusion has gained prominence due to its superiority over the other methods. In recent times, cross-modal 

attention-based fusion strategies have garnered attention for their effective capture of inter-correlation across 

different modalities. Feature-level fusion, illustrated by concatenation, represents the simplest fusion method 

but exhibits limitations in capturing inter-modality associations. 

Conversely, decision-level fusion endeavours to model each input modality independently and integrate the 

outcomes using algebraic rules. However, it often fails to capture the inter-modality relationships. Among 

these methods, model-level fusion consistently demonstrates superior performance, highlighting the need for 

advanced model-level fusion strategies in MER. It is noteworthy that many existing MER approaches have 

not fully exploited temporal and semantic alignment information across different modalities. The effective 

integration of temporal and semantic alignment for reconciling emotional-related information remains an 

underserved area. Hence, there is a critical need for further exploration into mechanisms for capturing 

temporal and semantic alignment across different modalities in various MER systems. In conclusion, 

addressing the aforementioned research challenges in lightweight and explainable deep models, as well as the 

development of advanced multimodal information fusion strategies, is indispensable for the progression of 

multifaceted ER. 

4.3|Cross-Corpus MER 

Despite significant advancements in single-corpus MER studies, challenges persist in the cross-corpus setting, 

where training and testing corpora originate from different sources. Existing MER models encounter 

difficulties in generalizing to new corpora due to corpus-specific biases and substantial variations in feature 

distributions. These discrepancies arise from differences in recording device quality, spoken languages, 

cultural nuances, and emotion annotation, among other factors. Consequently, applying existing MER models 

to new corpora results in significant performance degradation. Current efforts have predominantly focused 

on cross-corpus single-modal ER, particularly in audio and FER. However, limited research has specifically 

addressed cross-corpus MER, with particular attention to mitigating cross-cultural discrepancies. Notable 

experiments utilizing adversarial learning frameworks, as observed in the work by Liang et al. [64], present a 

promising approach to addressing the cultural influence on MER tasks. Future research endeavours may delve 

deeper into the application of adversarial learning methods, particularly those based on Generative Adversarial 

Networks (GANs), for cross-corpus MER. 

4.4|Additional Modalities for MER 

The prevalent focus of earlier MER research on audio, visual, and textual modalities may not fully capture 

the comprehensive features required for comprehensive emotional state characterization. Consequently, the 

integration of additional modalities stands as a compelling direction for advancing MER. Beyond 

physiological signals, body language, encompassing gestures, postures, and eye movement, represents a 

noteworthy visual modality for expressing human emotions. Although challenges related to gender 

differences, cultural influences, and scant-labelled datasets exist, the construction of multimodal emotional 

datasets integrating body language with other modalities holds significant promise for future research in MER. 

Consequently, investigating the performance of MER by integrating body language with other modalities 

using these constructed datasets warrants dedicated exploration. 
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4.5|Few-Shot Learning for MER 

Conventional MER studies extensively rely on a large volume of annotated multimodal emotional samples, 

particularly when employing DL for feature extraction. However, procuring extensive annotated multimodal 

emotional samples poses significant challenges in terms of manpower and resources. Furthermore, ongoing 

advancements in psychology have led to the development of new conceptual and computational methods for 

representing the intricate "semantic space" of emotion, resulting in a nuanced taxonomy comprising 27 

distinct emotional categories. Consequently, the evolving diversity and granularity of emotion categories have 

significantly complicated the collection of annotated emotional samples. To tackle these challenges, there is 

a burgeoning interest in the exploration of effective few-shot learning strategies for MER. Recent endeavours 

have delved into investigating the few-shot learning scenario for MER. Notably, Caridakis et al. [67] proposed 

a prompt-based multimodal fine-tuning method for few-shot MER tasks, emphasizing a unified pre-training 

strategy with two stages aimed at bridging the semantic gap between text and visual modalities. This 

underscores the importance of developing appropriate multimodal pre-training strategies for few-shot MER, 

reflecting a compelling area for future research. Furthermore, the exploration of advanced zero-shot learning 

approaches for MER, targeting the identification of rare unseen emotions, represents a crucial research 

direction. 

4.6|Attention Neural Networks for MER  

Attention neural networks [68] are DL architectures equipped with an attention mechanism. This mechanism 

allows the network to focus on specific parts of input data, improving its performance in various tasks. The 

first attention neural network was the attention-based RNN [69]. Recently, there has been extensive interest 

in transformer techniques that leverage a unique self-attention mechanism [70] due to their strong ability to 

model long-term dependencies. Various transformer-based methods have been developed in recent years, 

including the vision transformer [71], audio [72], and video transformer [73]. Furthermore, transformer-based 

techniques have been effectively utilised in various applications, such as image classification [74], object 

detection and segmentation [75], speech signal processing [52], automated depression detection [76], and air 

quality prediction [77]. However, DL methods are rarely used for MER despite their ability to learn high-level 

features from input data effectively. However, DL methods are rarely used for MER despite their ability to 

learn high-level features from input data effectively. However, DL methods are rarely used for MER despite 

their ability to learn high-level features from input data effectively. It has been pointed out that transformer-

related methods have not been widely adopted in this field. Although computational complexity can be an 

issue for many DL methods, they remain a promising approach for multimodal emotion classification. 

5|Overview of MER Studies 

Recent studies have indicated the superiority of MER over single-modal approaches. The incorporation of 

audio, visual, text, and other modalities is essential for achieving accurate MER. Traditional multimodal fusion 

methods encompass feature-level fusion (early fusion), decision-level fusion (late fusion), model-level fusion, 

and hybrid-level fusion. Early fusion involves the direct consolidation of features from individual modalities 

into a singular feature vector for emotion classification. Still, it may encounter issues related to dimensionality 

and fail to consider temporal associations across modalities. In contrast, late fusion combines outcomes from 

different modalities using mathematical rules such as "majority vote" or "average," enabling each modality to 

employ its own classifier. However, this approach treats modalities as independent entities and does not 

capture their interconnectedness. Model-level fusion individually models each modality while accounting for 

intermodal correlations, thereby facilitating interconnectedness and minimizing the necessity for modal time 

synchronization. Additionally, hybrid-level fusion combines diverse fusion strategies, capitalizing on the 

strengths of different fusion approaches. Common MER techniques are classified into bimodal and trimodal 

ER based on the utilization of single-modal information. These fusion methods are assessed within the 

context of bimodal and trimodal ER, and the findings are outlined in Table 3. In this section, we elucidate the 
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amalgamation of multimodal signals to establish a framework dedicated to multimodal sentiment analysis [78]. 

It is imperative to consider various methodologies [79]. The synthesis of multimodal analysis has the potential 

to amplify accuracy and proffer a more holistic comprehension in contrast to unimodal sentiment 

identification [80], [81]. Noteworthy reviews centred on multimodal sentiment analysis [12], [14], [17] 

predominantly emphasize strategies for multimodal fusion. Such strategies can be demarcated into feature-

level fusion (also known as early fusion), decision-level fusion (referred to as late fusion), model-level fusion, 

and hybrid-level fusion. Yet, it's worth noting that multimodal sentiment analysis might also employ an 

assortment of different techniques. Categorically, multimodal emotion analysis can be segmented into fusion 

strategies for emotion analysis from multimodal sources, fusion of multiphysiological techniques dedicated 

to emotion analysis, and fusion integrating physical and physiological models for emotion analysis. The 

classification of these categories is grounded on four distinct fusion strategies. Salient exemplars of these 

fusion strategies are illustrated in Fig. 5. 

Feature-level fusion 

Feature-level fusion is a technique that amalgamates features derived from diverse input sources to formulate 

a comprehensive feature vector. This aggregated vector is subsequently introduced to a classifier for further 

processing. Illustrations of this type of fusion, particularly for models incorporating combinations of video, 

audio, and text inputs, are presented in Fig. 5(a) to Fig. 5(c). 

Model-level fusion 

Model-level fusion is an approach that identifies correlation patterns amongst features extracted via different 

methodologies. This method necessitates the utilization of a fusion model, exemplified by Hidden Markov 

Models (HMM) or Extreme Learning Machines (ELM) Convolutional MKL-based multimodal emotion 

recognition and sentiment analysis [82]. For clarity, Fig. 5(d) and Fig. 5(e) depict instances of model-level 

integration applied to physical-physiological models and video-audio-text models, respectively. 

Hybrid fusion 

Hybrid fusion denotes the synthesis of both feature-level and decision-level fusion techniques. It effectively 

merges the advantages of these two methodologies. A representative example showcasing the hybrid 

amalgamation of video, audio, and text modalities can be viewed in Fig. 5(g) and Fig. 5(d) [69]–[71], [83]. 

5.1|Employing a Contact-Free Multimodal Approach for Sentiment Analysis 

In the realm of sentiment analysis, a prevalent approach entails the amalgamation of disparate unimodal 

techniques. These can be delineated as visual-audio sentiment recognition [31], [84], text-audio sentiment 

recognition [82], [85], and a tri-modal approach encompassing visual, audio, and text sentiment recognition 

[82], [84]. An overview of conventional strategies for multi-modal emotion analysis can be found in Table 3, 

which will be elaborated upon in the subsequent sections. 

5.1.1|Audio-visual emotion recognition 

In day-to-day interactions, emotions are primarily conveyed through visual and auditory cues [86]. Studies 

[81], [87]–[90] indicate that the combined recognition of emotions using both visual and auditory indicators 

is superior to their individual use. An overview of audio-VER is given in Table 3. The architecture of the input 

of audio and video information, the use of the essential audio and video feature extraction methods, and the 

type of feature fusion are shown in Fig. 6. 

Feature-level fusion 

Zhao et al. [91] introduced an ML approach for audio-VER, integrating HOG-TOP, acoustic, and geometric 

attributes, as depicted in Fig. 5(a). These features are subsequently processed through a multi-core SVM for 

both improvisational and predetermined FER. Meanwhile, Baltrusaitis et al. [31] employed a Convolutional 

Neural Network (CNN) and a deep network to extract these cues, which were further processed by a two-
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layer Long Short-Term Memory (LSTM) model to estimate Arousal-Valence values. Noteworthy techniques 

for identifying audio-visual emotions have been documented in [92] and [93]. 

 

Fig 5. The classification of MER is described in the reference. 

(a) Integration of features is used for visual-audio emotion recognition, described further in reference [92]. (b) 
Integration of features is used for audio-text emotion recognition, described further in reference [93]. (c),(d) Feature-
level integration is used for recognising emotions from video, audio, and text [94,95]. (e)Model-level fusion is used 
for analysing physical and physiological emotions [96]. (f)Model-level integration is used for recognising emotions 
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from video, audio, and text [97]. (g)Combined-level integration is used for recognising emotions from visual, audio, 
and text sources [98]. 

In particular, Hara et al. [93] introduced a method to determine emotion-centric regions from various 

techniques. To fuse video-audio attributes, they recommended a Factorized Bilinear Pooling (FBP) fusion 

model, which compensates for disparities in video frame expressions. This technique resulted in a recognition 

precision of 62.48% in the EmotiW2018 AFEW audio and video segment. It pioneered a deep Visual-Audio 

Attention Network (VAANet), emphasizing unique attention components and polarity-adaptive entropy loss. 

Remarkably, the spatial, channel, and temporal attentions were amalgamated with a 3D CNN [97] for the 

parsing of spatial and video sequences.  

Decision-level fusion 

Ramzani Shahrestani et al. [98] presented a visual-audio ER structure that synergizes multitasking with 

multifaceted feature learning. Specifically, they developed four sub-models using SVM and CNN classifiers 

for DL-oriented audio and visual cues. These models were later synchronized to infer the conclusive emotion 

through a hybrid approach. Carr achieved commendable accuracies of 81.36% (speaker-independent) and 

78.42% (speaker-dependent) in the eNTERFACE [36] evaluation. 

Model-level fusion 

This fusion demands ML models, such as HMM, Kalman filters, and Deep Belief Networks (DBNs), to 

discern associations from varied techniques for ultimate determinations. Huang et al. [33] devised an HMM 

(SC-HMM) to correlate the temporal dynamics of audio and video signals, followed by a Bayesian 

classification. The SC-HMM with Bayesian classification reported accuracies of 90.59% (across four emotion 

categories) and 78.13% on the human-machine multimedia communication DB and the SEMAINE DB, 

respectively. Zhang et al. [36] conceptualized Kalman filters rooted in Markov's model, fusing temporally 

ordered classifier decisions for emotion identification. In this context, audio and video data are merged 

through unimodal feature extractors and foundational classifiers based on Kalman filters and trustworthy 

metrics. Ko [37] harnessed CNNs to distil audio and video cues, formulating a profound fusion strategy 

(DBNs) to integrate features. This was coupled with a linear SVM classifier, registering accuracies of 80.36%, 

54.57%, and 85.97% across RML, eNTERFACE05, and BAUM-1 datasets. 

Similarly, Zhang et al. [36] proposed a mixed score-level method to compute all likelihoods of DBNs trained 

on the spatio-temporal dynamics of audio-visual channels. Priyasad et al. [94] utilized both two-dimensional 

and three-dimensional CNNs to extract advanced features from refined audio and video cues appropriate 

layers. Similarly, Zhang et al. [36] proposed the adoption of a conversational transformer model to capture 

intra-modal and cross-modal interactions, employing a conversational transformer, Bi-GRU network, speaker 

embedding, and ATS-Fusion component for audio-text fusion, ultimately facilitating emotion classification. 

Krishna et al. [99] presented an Adaptive Interactive Attention Network (AIA-Net) for audio-text ER, 

focusing on the dynamic interactive interrelations between text and speech feature representations and their 

subsequent utilization for emotion classification extraction. This was complemented by the utilization of a 

cross-attention mechanism for N-gram level correlation learning and a self-attention-based fusion method 

for ER from the concatenated audio and text features, culminating in the integration of FC and softmax 

layers. Hazarika et al. [100] innovatively introduced a novel MER approach founded on cross-modal attention 

and 1D-CNNs, employing audio and text encoders to obtain high-level feature representations and a cross-

modal attention network for interlacing audio and text sequences, leading to emotion classification using. 
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Table 3. An overview audio-VER. 

 

 

Fig. 6. Depicts an overview of the framework for diverse audio-VER, encompassing 

audio-visual feature extraction and fusion methods. 

 

Publication Feature 
Representation 

Classifier Fusion 
Strategy 

Database Performance 

[31] CNN, Resnet  LSTM  Feature-level  RECOLA  A/V: 78.80/73.20  
[98] C3D + DBN  Score-level 

fusion  
Model-based  eNTERFACE  6 classes: 89.39  

[91] Acoustic, Geometric 
and HOG-TOP 

Multiple 
kernel 
SVM  

Feature-level  CK; AFEW  7 classes: 95.7  
7 classes: 45.20  

[84]  
2D CNN, 3D CNN  

ELM-
based 
fusion, 
 SVM  

 
Model-based  

Big Data 
eNTERFACE  

3 classes: 91.30  
6 classes: 78.42  

[98] Multitask CNN  Meta-
Classifier  

Decision-level  eNTERFACE  6 classes: 81.36  

[92] 2D ResNet+Attention  
3D  esNet+Attention  

 
FC  

 
Feature-level  

VideoEmotion- 
8 Ekman-6  

8 classes: 54.50 
6 classes: 55.30  

[36] 3D CNN Soar Feature-level eNTERFACE 6 classes: 88.1 

[101] Audio: CNN  
Visual: 3D-CNN  

Linear 
SVM  

Model-level  1)RML  
2) 
eNTERFACE’05 
3)BAUM-1 s  

1)Acc(6-class):80.36%  
2)Acc(6-class):85.97%  
3)Acc(6-class):54.57%  

[102] Audio: LLDs  
Visual: Geometric 
Features  

Linear FC  Model-level  AVEC-2017  CCC(Arousal):0.654 
CCC(Valence):0.708  

[103] Audio: CNN  
Visual: VGG16  

FC + 
Softmax  

Model-level  eNTERFACE’05  1)Acc(6-class):80.83%  
2)F1-score:80.23%  

[104] Audio: FCN  
Visual: VGG-face  

FC + 
Softmax  

Model-level  1)IEMOCAP  
2)AFEW8.0  

1)Acc(4-class):75.49%  
2)Acc(7-class):63.09%  

[94] Audio: CNN Visual: 
CNN  

FC + 
Softmax  

Hybrid-level  1)SAVEE  
2)RAVDESS  

1)Acc(7-class):99%  
2)Acc(8-class):86%  

[81] Audio: LLDs  
Visual:CNN + Bi- 
LSTM  

FC + 
Softmax  

Feature- level  1)SAVEE  
2)RAVDESS  
3)RML  

1)Acc(7-class):99.75%  
2)Acc(7-class):94.99%  
3)Acc(7-class):99.23%  



 A Review of Methods for Detecting Multidimensional Emotions in Sound, Image and Text  16

5.1.2|Recognising textual and audio emotions 

Recent advancements in the realm of audio-text ER have led to the development of several prominent 

algorithms, including CNN, RNN, LSTM, GRU, AIA-Net, and GCN. For instance, Priyasad et al. [94] 

proposed a feature-level fusion technique that integrates self-attention for audio-text ER, entailing the 

extraction of high-dimensional hand-crafted LLDs for speech signals and textual feature derivation utilizing 

CNNs. The fusion of these features using a weighted addition based on attention score values, coupled with 

the subsequent employment of FC and softmax layers, facilitated effective emotion classification. 

Additionally, Fu et al. [105] introduced a DL-based approach to fuse audio and text modalities for ER, 

leveraging the SincNet layer for speech feature extraction and a combination of CNN and Bi-RNN followed 

by a CNN for text feature. Moreover, Yoon et al. [106] developed an audio-text ER method based on context 

and knowledge-aware Graph Convolutional Networks (GCN), involving the deep speech feature extraction, 

fine-tuning of pre-trained BERT models for textual feature extraction, and the integration of an emotional 

lexicon into building knowledge graphs, ultimately leading to effective ER. By adopting these cutting-edge 

methodologies, researchers have significantly advanced the field of audio-text ER, introducing innovative 

techniques that hold promise for real-world applications. 

Feature-level fusion 

Cai et al. [107] introduced a dual deep recurrent neural network to encode sequences integrating both text 

and audio information. These outputs were then merged to deduce the final sentiment. Using the IEMOCAP 

dataset, this model attained an accuracy rate of 71.8% across four categories. Wu and Liang [108] developed 

an enhanced CNN combined with a Bidirectional Long-Short Term Memory (Bi-LSTM) to extract spatial 

attributes and capture their temporal dynamics, utilized band-pass filters in conjunction with a Deep 

Convolutional Neural Network (DCNN) to extract both textual and auditory characteristics. They integrated 

varied methodologies to predict four emotions in the IEMOCAP dataset using text-acoustic features. 

Decision-level fusion 

Jin et al. [109] incorporated a Meta-Decision Tree (MDT) to integrate acoustic-prosodic data with classifiers 

like GMM, SVM, and MLP. Additionally, they employed the Maximum Entropy (MaxEnt) model to elucidate 

the correlation between states and emotional conveyance. Semantic tag rules are amalgamated to detect both 

speech and text sentiments, achieved by employing a weighted fusion strategy rooted in AP and SL for final 

sentiment prediction. 

Feature-level fusion vs. decision-level fusion 

To ascertain the relative efficiency of feature-level fusion and decision-level fusion in audio-text ER [110], 

new lexical and auditory attributes were created. Subsequently, two composite strategies were applied, yielding 

recognition accuracies of 55.4% and 69.2%, respectively, for four classes in the IEMOCAP dataset. Hazarika 

et al. [100] employed multiple dual RNNs to encode text-to-audio sequences, particularly in the context of 

emotional dialogues that encompassed both auditory and textual elements. In sum, the efficacy of both 

feature-level and decision-level fusion techniques has been analyzed through three distinct methodologies to 

gauge their performance. 

Though SER [26] and TSA [111] have made notable advancements utilizing distinct techniques, achieving 

compelling results using individual methods remains challenging [91]. Strategies that extract emotions from 

text-to-audio leverage both speech characteristics and linguistic content to augment the efficiency of unimodal 

emotion detection systems [35], [111]. An overview of text-audio ER is given in Table 4.    

In recent years, the research focus on Trimodal Emotion Recognition (TER) has led to the introduction of a 

diverse array of algorithms, such as MESM, MMAN, Bi-GRU, M3ER, CAT-LSTM, TransModality, 

MEmoBERT, IMAN, among others. These algorithms are built on comprehensive principles and approaches 

aimed at addressing the complex task of MER. For instance, Dai et al. proposed a Multimodal End-to-end 

Sparse Model (MESM) designed for effective emotion classification, leveraging audio and visual. The 
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architecture of entering audio and video information and using the most important methods of audio and 

text feature extraction and the type of feature fusion is shown in Fig. 7. 

Table 4. An overview text-audio ER. 

 

Features were extracted using a pre-trained VGG16 model and transformer for modelling temporal 

information. Additionally, a cross-modal sparse CNN block incorporating sparse CNN and cross-modal 

attention facilitated computational cost reduction, ultimately generating final emotion prediction scores 

through a weighted sum of classification scores from audio, visual, and text modalities. Subsequently, Pan et 

al. [114] introduced a Contextual Attention-based LSTM (CAT-LSTM) network designed to capture 

contextual information for utterances in multimodal sentiment analysis, highlighting the extraction of LLD 

features for the audio modality, utilization of a 3D-CNN for visual features, and pre-trained Word2vec for 

textual features. An attention-based fusion mechanism, culminating in an FC layer and a Softmax layer, 

facilitated final emotion classification. Moreover, Mittal et al. [84] proposed a Multi-Modal Attention Network 

Public Feature 
Representation 

Classifier Fusion  
Strategy 

Database Performance  

[109] Acoustic-prosodic 
Semantic labels 

Base 
classifiers, 
MDT, axEnt  

Decision-level  
2033 
utterances 

4 classes: 83.55 
4 classes: 85.79  
 

[91] A-DCNN, T-DNN 
Self-attention FC  Feature-level  IEMOCAP  4 classes: 80.51  

4 classes: 79.22  
[100] Acoustic features Word 

embeddings 
Pooling Scalar 
weight fusion  

Decision- level  
Feature-level 

IEMOCAP 
MSP- 
PODCAST  

565.10/558.20    
563.90/558.00  

[94] Audio: LLDs Text: 
CNN  

FC + Softmax  Feature- level  IEMOCAP  Acc(4-class):71.4%                 
F1-score:71.3%  

[99] Audio:SincNet+CNN                             
Text: CNN + Bi-RNN  

FC + Softmax  Model-level  IEMOCAP  Acc(4-class):80.51% 
WA:79.22%        
UA:80.51%  

[111] Audio: CNN + Bi- 
LSTM  Text: Glove + 
CNN  

FC + Softmax  Model-level  IEMOCAP  Acc(4-class):72.82%  

[112] Audio: LLDs        Text: 
Lexical Features  

FC + Softmax  Model-level  1)IEMOCAP 
 2)MELD  

1) WAA(4- 
class):83.6% 
WAF1(4class):83.8
%     WAA(6-
class):68.0% 
WAF1(6class):67.5
%                2) 
WAA(7-
class):62.0% 
WAF1(7class):60.5
%  

[105] Audio:Wav-RoBERTa 
Text: RoBERTa  

FC + Softmax  Model-level  1)IEMOCAP 
2)MELD 
3)CMU-
MOSEI  

1): 
Acc(4class):87.44%                        
F1-score(4class): 
87.16%         2) 
Acc(7-class):65.09%                
3) 0.574 
Acc(7class):53.20%        
Acc(2-class):89.33%                 
F1-score:89.33%  

[113] Audio: CNN+Bi-LSTM                
Text: BERT  

FC + Softmax  Model-level  1)IEMOCAP 
2)MELD  

1) Acc(4- 
class):85.82% , F1-
score:85.90%                              
2) Acc(7-
class):66.40%     F1-
score:64.63%  
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(MMAN) for MER, involving the utilization of typical LLD features, a 3D-CNN, and Word2vec for speech, 

visual, and text features, respectively. The MMAN integrated a multi-modal attention cLSTM for early fusion 

and three independent unimodal blocks for late fusion, complemented by an FC layer and a Softmax layer 

for emotion classification [115]. 

 

Fig. 7. Here is a summary of the framework for diverse audio-text ER involving audio-text 

feature extraction and fusion methods.   

5.2|Recognition of Emotions in Video, Audio, and Text 

Developed a MER model, incorporating a multiplicative fusion layer to enhance emotion classification, with 

a focus on popular LLD features for speech, facial action units and facial landmarks for visual features, and 

pre-trained Glove for text features. Furthermore, Metallinou et al. [116] introduced a multi-fusion residual 

memory network approach for identifying utterance-level emotions, leveraging a Bidirectional GRU (Bi-

GRU) model and FC layers to learn temporal and intra-modality interaction cues, along with a multi-stage 

fusion module for emotion classification. Subsequent studies have introduced innovative approaches such as 

end-to-end fusion with Transformer (TransModality), Interactive Multimodal Attention Network (IMAN), 

multi-channel weight-sharing Autoencoder integrating cascade multi-head attention, hybrid contrastive 

learning for trimodal feature representations, and MEmoBERT, a pre-training deep model customized for 

MER, all of which demonstrate the robustness and complexity of trimodal ER research.  Multimodal systems 

integrating voice, facial expressions, and text are pivotal in discerning genuine emotional states, as 

corroborated by various studies [117], [118]. For instance, a woman's response, "I do," accompanied by tears 

upon a proposal, can't be solely interpreted based on text, audio, or video. Thus, an amalgamation of these 

three inputs can potentially augment the accuracy of ER systems. An overview of video-audio-text ER is 

given in Table 5.     

Feature-level fusion 

Arguello and Rosé [119] utilized techniques like BoW, OpenEAR [120], and vision software for extracting 

linguistic, auditory, and visual cues, respectively. The trifold model encompassing text, auditory, and visual 

modalities showcased a marked advancement in efficiency, surpassing both singular and dual-modality 

models. Another study by Eskimez et al. [86] employed standard RNN, deep CNN, and openSMILE to 

capture temporal image data, spatial text data, and audio data descriptors, respectively. Moreover, MKL was 
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tailored to cherry-pick features from varied techniques to enhance detection. Lin et al. [85] introduced 

multiplicative M3ER. This method began by selecting feature vectors from three primary methods. 

Subsequent stages involved refining these features for optimization and eventually amalgamating them to 

predict six emotions. Within datasets like IEMOCAP and CMU-MOSEI, M3ER posted impressive accuracy 

rates of 82.7% and 89.0%, respectively. In contrast to the language-agnostic models in English or German 

sentiment analytics, Chinese sentiment analysis delves into both explicit and implicit symbol meanings, e.g., 

phonetic orthography. Poria et al. [113] built on this by suggesting a DISA model, intertwining phonetic 

features with text and visual indicators.  
Feature-level fusion vs. decision-level fusion 

Savva et al. [121] employed CNN for textual extraction and openSMILE for auditory features, further 

synthesizing artificial image data features. As illustrated in HOW [79], both feature and decision-level 

amalgamation use feature selection for detecting uni and multimodal sentiments. Studies displayed that while 

textual sentiment recognition reigns supreme among unimodal techniques, integrating visual-audio-text 

sentiment recognition trumps other unimodal and bimodal techniques. However, feature-level fusion 

generally has superior accuracy, albeit at a potential sacrifice of processing speed. 
Fusion at the model-level 

Mai et al. [115] pioneered various textual LSTM forms in a hierarchic structure, accounting for 

interdependencies between video texts [118]. Results showcased 80.3%, 68.1%, and 76.1% accuracy in MOSI, 

MOUD, and IEMOCAP datasets, respectively. Moreover, Mehrabian [23] proposed a DL-based multitasking 

model for sentiment analysis and recognition, factoring in the varying significance of each method through a 

context-level intermodal attention module (CIM). 

Hybrid-level fusion 

Zhang et al. [80] combined both feature and decision-based strategies to counterbalance their respective 

limitations. Utilizing SVM for text-based sentiment classification, they integrated audio-visual indicators using 

Bi-LSTM for sentiment detection. The culmination of both results through a weighted strategy determined 

the final sentiment. In essence, the fusion of various modalities offers an enriched and holistic approach to 

emotion and sentiment detection, as corroborated by the aforementioned studies. 
The architecture of multimedia information entry, including audio, image, and text information, using the 

most important audio and text feature extraction methods and feature fusion types, is shown in Fig. 8. 

6 |Emotional Computing Databases  

In academic research on emotional computing, DBs can be delineated according to the nature of the data 

they encompass, namely textual, speech or audio, visual, physiological, and multimodal datasets. The inherent 

properties of these DBs substantially influence the formulation of models and the architectural design of 

networks for emotional computation. 

6.1|Databases of Multimodal Sentiment 

In daily interactions, individuals utilize multimodal signals to convey and comprehend emotions. Multimodal 

DBs can be broadly categorized into two primary types: non-physical DBs and physical-physiological DBs. 

An overview of these multimodal DBs is provided in Table 6. In the realm of emotion analysis, several 

prominent DBs have been developed to aid in research. The Speech Analysis and Interpretation Laboratory 

introduced the Interactive Emotional Dyadic Motion Capture (IEMOCAP) [122]. This dataset was collected 

with ten actors who performed scripts designed to elicit various emotional responses, both scripted and 

improvised. Comprehensive data on facial expressions and hand gestures, encompassing the faces, heads, and 

hands of the actors, have been documented. The emotions displayed are categorized using two renowned 

sentiment analysis methods: discrete classifier-based annotation and continuous feature-based annotation. 



 A Review of Methods for Detecting Multidimensional Emotions in Sound, Image and Text  20

Furthermore, the CreativeIT DB [122], [123] encompasses multifaceted data sources, including visual, 

auditory, textual, and full-body motion data. This information was gleaned from sixteen actors engaged in 

dyadic emotional interactions, each lasting from two to ten minutes. The actors engaged in two kinds of 

spontaneous interactions: binary exercises and recitations. The emotional states of each participant are 

annotated in a three-dimensional framework in accordance with the video's frame rate. Moreover, the HOW 

DB [123] incorporates a collection of 

Table 5. An overview visual-audio-text ER. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Publication Feature 
Representation 

Classifier Fusion 
Strategy 

Database Performance  

[80] Facial movement, 
MFCC 

SVM, BiLSMT  Hybrid-level  SEMAINE  22-class: 80.50, 665.20   

[121] CNN, handcrafted,  
CFS, PCA 

MKL  
Feature-level  
Decision-level  

HOW  
3 classes: 88.60  
3 classes: 86.27  

[23] Three Bi-GRU 
CIM-attention Model-based 

CMU-
MOSEI 2 Multi-label: 62.80 

[85] Proxy and Attention 
Multiplicative fusion FC  Feature-level  

IEMOCAP  
CMU-
MOSEI  

4 classes1:82.70  
6 classes1:89.00  

[124] ResNet-v2 LSTM, fusion, 
Ensemble 
model 

Hybrid-level IEMOCAP 4 classes 82.90 
  

[125] Audio: LLDs  
Visual: 3D-CNN  
Text: Word2vec  

FC + Softmax  Model-level  CMU-MOSI  Acc(2-class):81.3%  

[84] Audio: LLDs  
Visual: 3D-CNN  
Text: Word2vec  

FC + Softmax  Hybrid-level  IEMOCAP  Acc(4-class):73.94%  

[126] Audio: LLDs  
Visual: Facial 
Landmarks  
Text: Glove  

FC + Softmax  Model-level  1)IEMOCAP  
2)CMU-
MOSEI  

1) Acc(4-class):82.7  
F1-score:82.40% 
2) Acc(6- class):89.0%  
F1-score:90.2%  

[127] Audio: LLDs  
Visual:3D-CNN  
Text: CNN  

FC + Softmax  Model-level  1)IEMOCAP  
2)CMU-
MOSI  
3)MELD  

1)Acc(6-class):60.81%  
2)Acc(2-class):82.71%  
3)Acc(7-class):67.04%  

[128] Audio: CNN  
Visual: CNN  
Text: Transformer  

FC + Softmax  Decision-level  1)IEMOCAP  
2)CMU-
MOSEI  

1) Acc(6- class):84.4%                 
F1-score:57.4%  
2) Acc(6- class):66.8%                 
F1-score:46.8%  

[115] Audio: LLDs  
Visual: 3D-CNN  
Text: Glove  

FC + Softmax  Model-level  IEMOCAP  Acc(6-class):65.0% 
F1-score: 64.5%  

[129] Audio:Bi-GRU  
Visual: Bi-GRU  
Text: Bi-GRU  

FC + Softmax  Model-level  1)IEMOCAP  
2)CMU-
MOSEI  
3)CMU-
MOSI  
4)MELD  

1) Acc(4- 
class):83.45%                
F1-score:82.63%  
2) Acc(2- class):82.4%              
Acc(7-class):50.9% ,                    
F1-score:82.6%  
3): Acc(2- 
class):82.3%             
Acc(7-class):39.4% ,                      
F1-score:82.5%  
MAE:0.896 
Corr:0.697 
4) 0.598 , Corr:0.69  
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Table 5. Continued. 

 

 

 

 

 

 

 

 

Publication Feature 
Representation 

Classifier Fusion 
Strategy 

Database Performance  

[130] Audio: AlexNet  
Visual: ResNet  
Text: Word2vec  

FC + Softmax  Model-level  1)IEMOCAP  
2)MSP-
IMPROV 
3)CMU-
MOSI  
4)CMU-
MOSEI  

1) Acc(4-class):86.3  
F1-score:86.5%  
2) Acc(4- 
class):71.8%,                  
F1-score:71.8% 3)                      
Acc(2- class):85.2%                     
Acc(7-class):46.6%                        
F1-score:85.1%  
MAE:0.713 , 
Corr:0.790  
4):Acc(2- class):85.4%                 
Acc(7-class):52.8% ,                     
F1-score:85.6%  
MAE:0.601 ,                         
Corr:0.776  

[129] Audio: LLDs  
Visual: Facial 
Landmarks  
Text: Glove  

Contrastive 
Learning  

Model-level  1)CMU-
MOSI  
2)CMU-
MOSEI  

1)Acc(7-class):48.3%  
2)Acc(7-class):53.4%   

[131] Audio: Wav2Vec2.0  
Visual: DenseNet  
Text: BERT  

FC + Softmax  Model-level  1)IEMOCAP  
2)MSP-
IMPROV  

1)WA(4- 
class):80.01%             
UAR(4-class):81.09% 
,                Acc(4-
class):80.01%  
2)WA(4- 
class):72.36%           
UAR(4-class):72.22%               
Acc(4-class):72.36%   
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Fig. 8. Here is an overview of the framework for diverse trimodal ER, incorporating trimodal feature 

extraction and fusion methods. 

13 positive, 12 negative, and 22 neutral videos, all sourced from YouTube. Additionally, relevant comments 

from these videos have been extracted and documented. The ICT-MMMO DB [132] is an expansive 

collection of 308 YouTube videos complemented by 78 film review clips from ExpoTV. Sentiment in this 

DB is segmented into five distinct categories: strongly positive, weakly positive, neutral, strongly negative, 

and weakly negative. Notably, the CMU-MOSEI [133] stands as a preeminent resource for sentiment analysis 

and recognition, boasting 23,453 sentences and 3,228 video segments acquired from over 1,000 distinct 

YouTube contributors. Each video in this dataset is paired with a meticulously crafted transcription that 

synchronizes the audio with corresponding phoneme scores. 
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Additionally, the MAHNOB-HCI [81] DB is a video-physiological DB. The emotions of 27 participants were 

monitored and recorded while watching 20 films using 6 video cameras, a head-worn microphone, an eye 

gaze tracker, and physiological sensors. The Remote Collaborative and Affective Interactions (RECOLA) 

[134] is a multimodal corpus of spontaneous interactions from 46 participants (in French). The participants 

worked in pairs to discuss a disaster scenario escape plan and reached an agreement via remote video 

conferencing. The activities of the participants are recorded and annotated by six annotators with two 

continuous emotional dimensions, arousal and valence, as well as social behaviour labels on five dimensions. 

DECAF [135] is a DB based on Magnetoencephalography for decoding the affective responses of 30 subjects 

while watching 36 movie clips and 40 one-minute music video clips. DECAF provides a detailed analysis of 

the correlations between the recorded data. 

Table 6. An overview of these multimodal DBs. 

 

7|Evaluation Metrics 

In any growing field of research, it is necessary to establish a commonly accepted evaluation methodology 

that is widely used within the field. This holds for sentiment classification as well. At present, the majority of 

the studies surveyed adopt the following standard measures: 

I. Accuracy: Accuracy is a measure of the number of correct predictions divided by the total number of 

predictions. It is calculated by taking the ratio of the number of true positives and true negatives to the total 

number of samples. Mathematically, the accuracy, ACC, is given by 

where TN is the tally of true negatives, TP is the tally of true positives, FP is the tally of false positives, and 

FN is the tally of false negatives. 

II. Precision: Precision is a measure of accuracy, indicating the extent to which the model's predictions are 

correct. It is the proportion of true positives to the total number of positives. Mathematically, precision, 

PRE, is given by  

Name Components Subjects Type Emotion Categories 
Text Speech Visual Psych 

IEMOCAP [122] ✓ ✓ ✓ ⨯ 10 Acted Happiness, Anger, Sad, 
Frustration and Neutral 
Activation-Valence-
Dominance 

CreativeIT [136], 
[137] 

✓ ✓ ✓ ⨯ 16 Induced Activation-Valence-
Dominance 

HOW [138] ✓ ✓ ✓ ⨯ ⨯ Natural Positive, Negative and 
Neutral 

ICT-MMMO [132] ✓ ✓ ✓ ⨯ ⨯ Natural Five basic sentiments 

CMU-MOSEI 
[113] 

✓ ✓ ✓ ⨯ ⨯ Natural Six basic emotions, Five 
basic sentiments 

MAHNOB-HC  
[112] 

⨯ ✓ ✓ ✓ 27 Induced Arousal-Valence-
Dominance-Predictability 
Disgust, Amusement, Joy, 
Fear, Sadness, Neutral 

RECOLA [134] ⨯ ✓ ✓ ✓ 46 Natural Arousal-Valence, 
Agreement, Dominance, 
Engagement, Performance 
and Rapport 

DECAF [135] ⨯ ✓ ✓ ✓ 30 Induced Arousal-Valence-
Dominance, Six basic 
expressions Amusing, 
Funny and Exciting 

ACC =
TN + TP

TN + TP + FP + FN
 , (1) 
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A lower precision value indicates a higher number of false positives, and a higher precision value indicates a 

lower number of false positives. Therefore, a higher Precision score indicates better performance. 

III. Recall: Recall is a measure of the totality of the model's predictions and indicates the extent to which all 

relevant samples have been correctly classified. It is the ratio of true positive predictions to the sum of true 

positive and false negative predictions. Mathematically, the recall, REC, is given by 

A higher recall indicates that more of the relevant samples have been correctly classified, while a lower recall 

indicates that there are many false negatives in the model's predictions. 

IV. F-Measure: The F-measure is a metric that balances recall and precision in sentiment categorisation. It is 

calculated as the harmonic mean of precision and recall, given by 

A higher score indicates a better performance of the model in both capturing the true positive cases and 

avoiding the false positive cases. In other words, a high F1 score means that the model is well-balanced 

between correctly identifying the relevant results and having a low number of false positives. 

V. K-Fold Cross-Validation: ML models can be evaluated using the resampling technique of cross-validation. 

In k-fold cross-validation, a limited sample of data is resampled and divided into k groups. The model is 

then trained on a single group and tested on k -1 groups. K-fold cross-validation is used to avoid 

underfitting and overfitting. 

VI. Confusion Matrix: The performance of a model is visualised by a confusion matrix (Table 7). The different 

metrics that can be used to evaluate the model performance can be calculated by analysing the confusion 

matrix. 

Table 7. Confusion matrix. 

 

 

 

8|Ethical Considerations in Emotional Computing 

Emotional computing raises ethical considerations regarding privacy due to the collection and analysis of 

personal and sensitive data. Concerns exist about the potential manipulation of emotions or behaviours 

through targeted content and advertising. The potential consequences of emotional computing include the 

erosion of human autonomy and emotional privacy, as well as the risk of perpetuating biased or discriminatory 

outcomes. It is crucial to consider the impact on mental health and well-being when relying on emotional 

computing, as it may lead to emotional dependency or detachment. Additionally, ethical concerns arise 

regarding transparency and consent in the use of emotional data, as well as the potential for unethical or 

malicious applications, such as emotional manipulation or surveillance. Balancing technological advancement 

with ethical responsibility is crucial in the development and deployment of emotional computing technologies. 

Emotional computing also raises questions about the ownership and control of emotional data, particularly 

in cases where individuals may not fully comprehend the implications of sharing their emotional responses 

with technology. The importance of robust data protection and user consent mechanisms to safeguard against 

exploitation and misuse of emotional data is highlighted. Additionally, emotional computing has the potential 

to perpetuate social inequalities through biased algorithms or discriminatory practices, disproportionately 

affecting certain groups or individuals. Addressing ethical considerations is crucial for building trust, 

PRE =
TP

TP + FP
 . (2) 

REC =
TP

TP + FN
 . (3) 

F1 − score =
PRE × REC

PRE + REC
. (4) 

Predicted Values 

Actual Values 

 Negative Positive 

Negative TN FN 

Positive FP TP 
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promoting responsible innovation, and ensuring that emotional computing technologies serve the greater 

good while respecting individual autonomy and emotional well-being.   

9|Discussion  

In this scholarly examination, prevalent models and DBs instrumental for emotion computation are 

delineated, focusing on MER and analysis. Specifically, we will explore: 

I. The influence of varied signals such as text, audio, and visual cues and the consequent ramifications of 

their combinatory and fusion methodologies on multimodal sentiment analysis, as evidenced in references 

[37], [110], [113], [115]. 

II. The repercussions of certain determinants, for instance, established DBs and performance metrics, upon 

emotion computational processes. 

III. Practical implementations of emotional computing in real-world contexts. 

9.1|Model Combination and Fusion Strategies in Multimodal Sentiment Analysis 

The amalgamation of diverse techniques and the employment of fusion strategies stand as pivotal elements 

in multimodal sentiment analysis. Multimodal combinations can be categorized into non-physical connection 

methods [139], [140], physiological methods [141], and hybrid approaches [142]. Fusion strategies encompass 

feature-level fusion [91], decision-level fusion [36], combination-level fusion [80], and model-level fusion. 

Distinct method combinations that do not necessitate physical connections include video-audio, text-audio, 

and tri-modal video-audio-text configurations [143]. Integration of visual and auditory information often 

results in augmented performance relative to single-mode analyses [144]. Text-based methodologies occupy 

a central position in multimodal sentiment analysis [85], [121]. In contrast, multimodal physiological signals 

can be integrated with visual cues such as facial expressions, voice, and gestures for comprehensive emotion 

assessment [145]. At the heart of multimodal sentiment analysis lie two cardinal fusion strategies: 1) feature-

level, and 2) decision-level fusion [36], [91]. Feature-level fusion typically involves vector concatenation [85] 

or fusion [93]. 

While decision-level fusion often employs majority or average voting mechanisms. Linear-weighted 

computations [109] serve both feature-level combinations and decision-making, leveraging diverse 

methodologies. Evidently, feature-level fusion dominates over decision-level fusion in prevalence. However, 

in decision-level fusion, individual models are processed independently, with results amalgamated 

subsequently. Conversely, combination-level fusion [80] seeks to harness advantages from both the previous 

strategies.  

Model-level fusion [146], distinct from the other strategies, utilizes HMM [33] or Bayesian networks [147] to 

decipher and synergize characteristics from diverse models, the selection of which crucially influences the 

fusion outcomes. 

9.2|Influence of ML and DL on Emotional Computation 

Historically, sentiment analysis predominantly leveraged ML techniques [10], [18], [19]. This process involved 

signal preprocessing, curated feature extraction, and classification (subject to feature selection) [139], [148]–

[151]. Despite their versatility, the specificity of ML features can impede their repurposing. Common 

classifiers in this domain include SVM [152], HMM [135], GMM [138], RF [133], KNN [134], and ANN 

[111], with SVM emerging as particularly efficacious in emotional computations [83], [153]. DL offers distinct 

advantages, particularly in automated feature acquisition. CNNs and their derivatives excel in distilling salient 

features from static data, while RNNs capture temporal dynamics in sequences [154]–[159]. CNN-LSTM 

models undertake deep spatiotemporal feature extraction, with adversarial learning enhancing model 

robustness through data augmentation [160]–[163]. Additionally, autoencoders, constructed through DL, 

bolster overall performance [156], [164], [165]. 
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9.3|Factors Influencing Sentiment Computation 

This review underscores the influence of DB metrics on emotion computation progress. Notably, the scarcity 

of non-contact physiological emotion DBs has stymied video-PER [166]. In contrast, the ascendance of Facial 

Emotion Recognition (FER) is noteworthy, spurred by publicly accessible DBs. However, DB disparities in 

size, quality, and collection environments pose challenges, especially affecting DL-based ER more than its 

ML counterpart. Many findings underline the pivotal role of DB size in sentiment analysis performance [167], 

[168], with pre-trained DL models [169], [170] proffering solutions for personalized sentiment analyses. 

Emotion DBs are often tagged with discrete or dimensional labels corresponding to the raw data. Emotional 

categorization spans discrete emotional states, dimensional classification, and continuous dimensional 

regression [171], [172]. Notably, F-Measure emerges as the favoured evaluation metric, especially for skewed 

DBs. Concurrently, MSE and RMSE serve as benchmarks for sentiment prediction [161], [173], while the 

congruence coefficient, blending PCC and MSR, is recommended for baseline evaluations [174], [175]. 

9.4|Practical Implications of Emotional Computing 

Recent scholarly endeavours have spotlighted the pragmatic applications of emotional computing [176], [177]. 

SenticNet, under the aegis of Eric Cambria [81], [178], [179], has harnessed sentiment computing [22], [180], 

[181], insights for diverse sectors from Human-Computer Interaction (HCI) [182] to finance [152] and social 

media analytics [183], [184]. Sentiment analysis tools are also integrated into recommender systems [185], 

[186]. VER finds utility in arenas like distance learning [187], [188], player performance optimization [121], 

[189]–[191], and healthcare [192], including autism interventions [193]. Audio and physiological cues, 

consistent in emotional representation, are pivotal in diagnosing mood disorders, augmented by wearable 

technology [194]–[197]. The potential of multimodal sentiment analysis in bolstering the efficacy of unimodal 

sentiment recognition has spurred extensive research into practical applications, rendering it an intriguing 

domain of investigation [198]. 

10|Conclusions and Recent Developments 

This article offers a thorough examination of the existing literature on emotional computing. In Section 1, 

the text classifies emotional computing and provides illustrative examples. Section 2 presents a synopsis of 

contemporary reviews in the field of emotional computing. Section 3 delineates emotional models based on 

prevailing psychological theories, segmenting them into discrete models and subsequent models; the latter's 

output aids in the categorization of emotions. These identifications are subsequently assessed through 

classification or regression against pertinent metrics. Crucially, the evolution of emotional computing 

necessitates the use of foundational DBs for training and computational frameworks for DL and ML-

grounded emotion comprehension. Section 4 examines widely used multivariate DBs in sentiment analysis, 

given that a majority of sentiment analysis techniques employ these repositories. Section 5 delves into recent 

innovations in sentiment computing, primarily segmenting them into multimodal sentiment recognition and 

analysis, which are further partitioned into ML-centric techniques and DL-centric models. Broadly, 

multimodal sentiment analysis is bifurcated into non-physical multimodal techniques, such as visual-audio, 

text-audio, and video-audio, in conjunction with varied strategies like feature-level, decision-level, model-

level, or hybrid approaches. Section 6 broaches critical considerations in sentiment computing, emphasizing 

the ramifications of model integrations and amalgamation strategies on multimodal sentiment analysis and 

the implications of ML and DL methodologies. While significant strides have been made in crafting 

computational systems utilizing unimodal or multimodal data, there remains a scarcity of resilient and 

efficacious algorithms for emotion prediction and discernment in multifaceted environments. Consequently, 

this article proposes several imperative directives for prospective investigations in emotional computing: 
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I. The creation of innovative and expansive foundational DBs, particularly multimodal repositories that 

encompass varied modalities such as text, audio, imagery, and physiological metrics. These should 

encapsulate both spontaneous and staged scenarios, ensuring data annotation for both discrete and 

dimensional emotional models. 

II. Numerous impediments in emotion detection and analysis await resolution, encompassing facial ER in the 

face of partial occlusions or insincere expressions, physiological emotion discernment from intricate signals, 

and a foundational model tailor-made for identifying discrete and subsequent emotional states. 

III. Augmenting fusion strategies remains a vast domain for exploration. The incorporation of rule-based or 

statistical expertise can refine the fusion of diverse methodologies, taking into consideration the 

significance and role of each in ensuring precision in a prospective area for future inquiry. 

IV. The employment of unsupervised learning techniques, such as cluster-based learning, warrants further 

investigation due to their potential to enhance the resilience and consistency of sentiment analysis. 

V. Robotics stands out as a salient application of sentiment analysis. With the developments highlighted in 

this review, one can envision robots endowed with emotional acuity, adept at emulating human interactions 

and their surroundings and swiftly delivering suitable reactions. 

An area with promising prospects for future research is the comprehension of sentiment in conversations. 

Expressions of sentiment by one individual in a conversation can influence others. Previous studies have 

shown the significance of discourse context in understanding human language. If multimodal systems can 

replicate human emotional interdependencies, it could represent a substantial advancement in multimodal 

sentiment analysis. Moreover, there is a need for further research to develop models that are language-

independent, enabling generalization to prediction tasks across different languages. 
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