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Abstract 

 

1 | Introduction  

Uncrewed Aerial Vehicles (i.e., drones), which can perform tasks without human intervention, are 

used in a wide range of applications, from manufacturing and logistics [1,2] to healthcare [3] and 

exploration [4]. Drones are used in logistics and warehousing to move goods around the facility, pick 

and pack orders, and track inventory [5,6]. They can also be used for tasks such as palletizing and 

depalletizing, loading and unloading trucks, and sorting packages [7,8]. The use of drones in 

warehouses is still relatively new but proliferates in warehouses, offering numerous benefits such as 

increased efficiency, cost savings, and improved safety. 
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Today, we can easily utilize drones to perform a wide range of tasks, whether by employing semi or fully autonomous 

flight modes or controlling them remotely. However, a significant drawback of current drone deployment methods is 

the limited operational time due to battery constraints. To address the battery limitations of indoor drones, a solution is 

proposed wherein wireless chargers are strategically placed within the coverage area of the drones' flight paths. This 

research paper presents an optimization algorithm that determines the ideal number of wireless charging stations needed 

to cover the entire area to ensure continuous charging capability throughout the flight. This work proposes an 

optimization framework that effectively solves this non-deterministic polynomial-time hardness problem. The algorithm 

is assessed by comparing its results with those of other algorithms. To evaluate the performance of our proposed 

approach, we compared several recent algorithms. Our algorithm has demonstrated superior speed compared to other 

algorithms. 
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Like any other battery-powered device, drones are limited by their battery life [9]. Depending on the drone's 

size, weight, and battery capacity [10], its flight time can range from a few minutes to a few hours. The 

limited battery life can be a significant challenge, particularly for commercial or industrial applications [11], 

where drones must fly for extended periods to cover large areas or complete tasks [12]. One solution to 

the short battery life problem is to use multiple batteries or to swap out depleted batteries with fully charged 

ones [13]. This method can help extend the drone's flight time without waiting for the battery to recharge. 

Another solution is using a charging system to charge the drone's battery in the field. These charging 

systems can be solar-powered, portable, or vehicle-mounted, allowing the drone to recharge its battery 

while operating [14]. This solution is beneficial when the drone needs to operate in remote areas where 

access to power sources is limited. However, there are some limitations to these solutions. Using multiple 

batteries or swapping out batteries can add weight and cost to the drone, reducing its payload capacity and 

increasing its overall cost.   

Wireless charging is a promising solution for nonstop indoor drone flying. [15]. With wireless charging, 

the drone can continuously fly and recharge its batteries simultaneously without requiring a manual battery 

swap or docking [16]. The principle behind wireless charging is that a power source generates an 

electromagnetic field [17], which a receiver coil receives in the drone. The received energy is used in 

magnetic resonance or inductive charging to charge the drone's batteries. One of the challenges of wireless 

charging is limited coverage [18,19], which can be a significant obstacle for indoor drone applications. The 

range of wireless charging is limited by various factors, such as the distance between the transmitter and 

receiver, the power of the transmitter, and the efficiency of the charging process [20,21]. Also, wireless 

charging technologies can be expensive, so optimizing their use is important to minimize costs. One way 

to do this is to ensure that the wireless charging capabilities are available at the necessary points in the 

environment without wasting resources on areas where they are not needed.  

Determining the minimum number of wireless chargers needed in an indoor warehouse requires 

considering various factors, including the size of the area to be covered, the number of drones to be 

charged, the desired charging speed, and the wireless charging technology being used [22,23]. In general, 

the optimal placement of anchor sensors in two dimensions in a way that a single static target has access 

to at least one of the sensors is thoroughly studied [24,25]. Furthermore, determining an optimal anchor 

location configuration for a three-dimensional indoor space is a well-known Non-deterministic 

Polynomial-time Hardness (NP-Hard) problem [26,27,28]. 

This paper aims to determine the optimal number of wireless charger nodes needed to ensure 

comprehensive coverage of the indoor space. In other words, the objective is to ensure that a drone always 

has access to at least one wireless charger while in flight. All being said, the contribution of this work is 

twofold: this is a work that proposes a distributed wireless chargers’ placement to enable recharging 

capability for drones at any point in the indoor environment, but also, this is a work that considers the 

minimization of the number of these wireless chargers and manages to find optimal solutions in an efficient 

and timely manner.  

2 | Literature Review  

Wireless charging placement optimization shares similarities with the Wireless Mesh Network (WMN) 

problem and Gateway Node Placement (GNP) problem. WMN [29] and GNP [30] have been proven to 

be in the class of NP-hard problems. Consequently, previous work has focused on providing efficient 

heuristic-based and meta-heuristics-based algorithms to find near-optimal solutions to the problem. 

Typically, the GNP problem is defined in terms of an Integer Linear Program (ILP) defined to find a 

minimum number of gateway nodes for a given WNM backbone network that satisfies a given set of 

Quality-of-Service (QoS) constraints [31,32]. Three QoS constraints that influence network performance 

are commonly considered. These include the communication delay, relay load, and gateway throughput. 
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Bacanli et al. [33] aim to tackle the issue of positioning charging stations in a UAV-assisted opportunistic 

network by utilizing three distinct clustering techniques: K-means, Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN), and random clustering. It was observed that employing K-means 

clustering with three clusters to determine the charging station locations yielded superior results 

compared to randomly selecting the locations regardless of the routing strategy used between nodes. 

Wang et al. [34] propose beacon placement algorithms that leverage the floor plan geometry with 

provable theoretical guarantees. Firstly, a greedy algorithm is presented, utilizing the properties of sub-

modular functions. Additionally, a random sampling algorithm is proposed, strategically placing beacons 

to ensure all targets' localization. Wang et al. [35] focus on addressing the problem within a constraint 

network model, where the traffic demand is distributed non-uniformly, and the potential positions for 

mesh routers (MRs) are predetermined. After formulating the MR placement problem, the authors 

conduct theoretical analysis to validate the traffic demand and identify the optimal position for the 

Internet gateway. Li et al. [36] explore the challenge of cooperatively deploying chargers and sink stations 

in wireless sensor networks while minimizing their number. The authors propose a near-optimal 

algorithm that tackles this problem by breaking it down into two subproblems and optimizing the 

deployment of chargers and sink stations iteratively.  

Ding et al. [28] investigate the problem of determining the optimal placement of wireless chargers 

considering deployment costs. The authors approach the problem from two perspectives: the first 

focuses on minimizing costs in charger placement, while the second aims to maximize the charging level 

in charger placement. He et al. [37] examine the deployment of wireless chargers in a network to 

minimize their number while ensuring that any static node positioned in the network can receive enough 

wireless energy to operate continuously. Li et al. [38] examine the problem of minimal charger placement 

to deploy the fewest chargers while ensuring sufficient recharge power for battery-free nodes to sustain 

their operation. To tackle this challenge, the network area is divided into grids, and the researchers 

develop both greedy and efficient heuristics to address this problem effectively.  

Having considered the existing literature, it is evident that certain gaps persist in the current body of 

knowledge. As a result, this research endeavors to address these deficiencies, and the primary objective 

of this study is to ascertain the ideal quantity of wireless charger nodes essential for achieving complete 

coverage throughout the indoor environment. 

3 | Optimization Formulation 

To solve this Mixed Integer Programming (MIP) problem, we modified the MIP problem to incorporate 

all the constraints. A modified WMN planning problem presented in [39] can be defined where let 

 denotes the set of possible positions where to install charger devices and  is 

the set of positions in the warehouse for drones that can fly (i.e., receiving positions in the warehouse). 

The cost associated with installing an MR in is denoted by , while the additional cost required to 

install a (Mesh Access Points) MAP in   is denoted by . Therefore, the total cost for installing a 

MAP in S is given by . The connectivity parameters define which network elements can be 
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connected through wireless links. They depend on  and   locations and can be determined by using 

proper propagation prediction tools. For each pair ; , the coverage parameters are considered  

the wireless connectivity parameters : 

 

0

the decision variables of the problem include  assignment variables  

installation variables : 

wireless connection variables , : 

and finally, flow variables  which denotes the traffic flow routed on a link , where the special variable 

 denotes the traffic flow on the wired link between MAPj and the backbone network. Accordingly, the 

problem can be formulated as follows in this case, and wired backbone connection variable 𝑤𝑗𝑁 will be 

ignored. 

Here, , , Subject to: 

 

 

 

 

 

 (1) 

 (2) 

  (3) 

(4) 
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The objective function accounts for the total cost of the network including installation costs  and costs . 

Constrains (1) guarantee full coverage of all , while constraints (2) are coherence constraints assuring 

respectively that  can be assigned to  only if a device is installed in  and if  is within the coverage set of . 

Constraints (3) defines the existence of a wireless link between  and , depending on the installation of nodes 

in  and  and wireless connectivity parameters . Constraints force the assignment of a  to the best  in which 

a MAP or MR is installed, while constraints (4) restrict the decision variables to take binary values. The resulting 

model includes the set of  which covers . 

Also, a modified GNP problem presented in [31,40] can be defined without considering QoS 

constraints. For each WMN generated, a network topology graph, , can be constructed and 

used for analysis. The topography network is inconsequential in our specific case since the warehouse 

is a straightforward cube shape. In the literature for RNPs [24, 27], the set of vertices  in a graph 

consists of mesh clients and mesh routers. The edges  represent connectivity, where: 1) for two 

router nodes to be connected, they must be in their communication range, and 2) the client/router edge 

is added when the client is in the communication range of a router.  

 

In this case, a WMN for the RNP problem [30] is defined as a set of interconnected devices in a universe 

, where  is a set of 𝑛 mesh router nodes and  is a set of  

mesh clients. The  represents the  mesh router and consists of a tuple (  where 

, is the position of the router node,  is its nominal communication range, and  is the circle 

representing its radio coverage centered at the  position with radius  for . A binary 

variable  is used to indicate if a corresponding mesh router has been selected as a gateway. For 

 and : 

In order to represent a router node assignment to a gateway, a binary variable  is used. Data traffic 

generated by each router node will be served by a single gateway.  

Finally, the objective function for the GNP problem is defined as:  

Subject to:  
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The ILP searches for the optimal value for gateway assignment, minimizing their number. The condition 

defined in Eq. (2) ensures that each router node is only assigned to one gateway. The inequality specified 

in Eq. (3) guarantees that a node  is only assigned to a node that has been selected as a gateway. The 

constraints defined in Eq. (4) indicate that  and  are binary variables. This ILP formulation for the 

GNP problem is NP-hard since it can be reduced to the minimum set cover problem [25,41]. 

In this study, to add realism to our study, we introduce the constraint that chargers cannot be installed on 

the floor. Furthermore, it is reasonable to make an assumption of a 4-meter height for the warehouse, 

considering the typical dimensions observed in real-world warehouses. Our analysis considers the ceiling 

and walls as the feasible locations  for the chargers. The designated drone space  represents the area 

within the environment where the drone can freely navigate. The optimization constraint is employed to 

ensure that the resulting charger configuration effectively covers all points within the set , guaranteeing 

accessibility to at least one wireless charger for each point with a radius of . In this case, Python was 

employed to simulate and assess the performance of our proposed scheme. Algorithm 1 provides both 

pseudocode and an implementation for the algorithm. Initially, the code generates coordinate points for 

the warehouse area, computing the Euclidean distances (𝐷𝑖𝑘) between these points. Constraints are 

established for each node in the range of points outside the warehouse; it checks if the Euclidean distance 

between the point inside the warehouse  (indexed by 𝑖) and the point outside the warehouse  (indexed 

by 𝑘) is less than or equal to 𝛾. If it is, the index 𝑘 is appended to the list 𝐾. After checking all the points 

outside the warehouse, the function calculates the product of the binary variable 𝑥𝑘 and the sum of the 

distances of the points in K. It ensures that the resulting sum is greater than or equal to 1, indicating that 

some points have a binary variable value of 1, ensuring the existence of a charger within a distance of 𝛾 

from that specific node. This step effectively ensures that each point inside the warehouse is covered by at 

least one charger placed within a radius of 𝛾 positioned within a predefined radius. The subsequent step 

involves setting the binary variables corresponding to the designated points in the warehouse. In the next 

section, we will present the performance evaluation outcomes conducted on our optimization framework. 

 (1) 

 (2) 

  (3) 

(4) 
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Algorithm 1. Placement Optimization Algorithm 

 

4 | Results and Evaluations 

In this section, the performance evaluation results of the algorithm are presented. We conducted a comparison 

between our algorithm and the theoretical approach in scenarios with smaller room dimensions, where the 

theoretical approach, although capable of determining the optimal placement, exhibited slower performance. 

This finding reinforces the proposed algorithm's reliability, assuring its applicability to larger room dimensions 

and faster performance.  

Table 1 displays the outcomes of the proposed algorithm across various room dimensions. It is crucial 

to recognize that the resolution to each problem may not be singular and can vary depending on the 

algorithm's combination and assortment of constraints. We present the outcomes for a selection of 

warehouse dimensions, considering large-scale scenarios. We determine the optimal number of wireless 

chargers for each room size needed to achieve complete coverage while acknowledging that multiple 

solutions may exist. Figure 1 illustrates the arrangement of wireless chargers in two different scenarios. 

In (a), we have a room with dimensions of 16×10×4, while in (b), the room has dimensions of 

20×18×4. The figure visually represents the optimal placement strategy for the wireless chargers in each 

room configuration. 

Table 1. Result of the proposed algorithm. 

Room 
dimensions 

Number of 
chargers 

(x,y,z) of placement # of 
variables 

# of 
constraints 

10,10,4 4 (2, 5, 4), (3, 0, 1), (5, 10, 1), (10, 5, 1) 282 91045 
16,10,4 6 (3, 0, 0), (3, 7, 4), (9, 5, 4), (9, 10, 0), (12, 

0, 2), (16, 7, 2) 
396 213301 

16,16,4 9 See Appendix 546 490501 
20,18,4 13 See Appendix 704 908277 
20,20,4 14 See Appendix 762 1098885 
27,27,4 27 See Appendix 1217 3288065 
30,24,4 26 See Appendix 1208 3220277 
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Fig. 1. Optimal placement of the wireless chargers: (a) room with 16 × 10 × 4 dimension; (b) room 

with 20 × 18 × 4 dimension. 

5 | Conclusion and Future Research 

This article introduces a solution to address the limited battery life of drones, allowing for uninterrupted 

flights through the utilization of wireless charging technology. As this fall within the NP-Hard category of 

optimization problems, we have presented our algorithm, which efficiently and promptly finds a solution 

and has superior speed compared to other algorithms [42]. While the proposed system allows drones to 

recharge while in flight or while quickly hovering, without the need to deviate from their primary mission 

path, it has limitations due to certain real assumptions and needs more sensitivity analysis to understand 

the robustness of the solution. 

For future research, conducting a site survey to identify areas of drone operation and wireless charging 

requirements would optimize the placement of wireless chargers. Based on the survey findings, the optimal 

placement of chargers and the required power output can be determined, ensuring that the drones can 

recharge their batteries as needed. To further improve the system, it is recommended to consider real 

assumptions such as capacity constraints of the hubs and apply QoS constraints in the sense of the strength 

of wireless charger signals to ensure a specific strength. This guarantees a continuous and uninterrupted 

charging process, minimizing any potential interruptions or disruptions. Incorporating a cost function into 

the optimization process is advisable for future investigations, considering the variations in installation 

costs across different warehouse areas. This cost function would enable the consideration of installation 

expenses when determining the optimal locations for charging stations, accounting for the differing costs 

associated with each specific location within the warehouse. Also, conducting sensitivity analysis could be 

an area for further exploration in future research endeavors, enabling a more comprehensive understanding 

of the solution's robustness and performance under various conditions. 
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Dimensions 
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16,16,4 9 (3, 3, 4),(3, 8, 4),(3, 13, 4),(8, 3, 4),(8, 8, 4),(8, 13, 4),(13, 3, 4),(13, 8, 4),(13, 13, 4) 

20,18,4 13 (0, 13, 2),(3, 3, 4),(3, 8, 4),(5, 15, 4),(8, 6, 4),(8, 11, 4),(10, 0, 0) , (12, 18, 0),  
(13, 6, 4) , (13, 11, 4) , (17, 3, 4) , (17, 15, 4) , (20, 9, 0) 

20,20,4 14 (3, 7, 4),(3, 12, 4),(3, 17, 4),(4, 0, 0),(8, 7, 4),(8, 12, 4),(8, 17, 4),(11, 0, 0), 
(13, 7, 4),(13, 12, 4),(13, 17, 4),(17, 3, 4),(20, 9, 0),(20, 16, 0) 
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(15, 14, 4),(15, 19, 4),(16, 3, 4),(19, 7, 4),(19, 22, 4),(20, 12, 4),(20, 17, 4), 
(23, 0, 0), (23, 27, 0),(24, 7, 4),(24, 20, 4),(27, 13, 0) 

30,24,4 26 (0, 4, 0),(0, 10, 0),(0, 17, 0),(4, 24, 2),(7, 3, 4),(7, 8, 4),(7, 13, 4),(7, 18, 4), 
(12, 0, 0),(12, 7, 4),(12, 12, 4),(12, 17, 4), (12, 24, 0),(17, 7, 4),(17, 12, 4), 
(17, 17, 4),(19, 0, 0),(19, 24, 0),(22, 7, 4),(22, 12, 4),(22, 17, 4),(26, 0, 0), 
(26, 24, 0),(27, 7, 4), (27, 12, 4),(27, 17, 4) 
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