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Abstract 

 

1|Introduction    

Due to modern and safe technologies, new banking tools such as mobile phones and electronic payments are 

increasing, reducing armed attacks and robberies. However, despite the economic crises, the amount of cash 

and physical money in the world economic cycle increases annually and plays a vital role compared to previous 
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decades. For example, there were more than 1,979 million pounds of physical money and coins only in the 

UK economic cycle in 2019, a growth of about 28% compared to 2014 [1]. According to published statistics 

from the European Central Bank (ECB), the amount of physical money and coins in the European economic 

cycle was about 22,468 million euros in 2019, a growth of about 11% compared to 2016 [2]. The US Federal 

Reserve Bank has recorded $ 43 billion in the US economic cycle in 2018, a growth of about 19% compared 

to 2014. Accordingly, the amount of non-paper and physical money transactions in Europe is 7% of the total 

liquidity in the European cycle. Similar behavior is observed in the US. On average, American consumers use 

cash in more than 40% of their transactions [3]. Therefore, the routing problem in the vehicle carrying cash, 

which means the physical transfer of banknotes, coins, and valuables things from one place to another place, 

is of great importance. Banks and companies carrying cash are constantly exposed to real risks, such as theft 

and armed attack, due to the essence of the portable commodity. Therefore, we have proposed a model in 

this paper that performs the process of money delivery with the least risk and in a specific period. 

 

2|Literature Review  

One of the basic and classic Vehicle Routing Problems (VRPs) is the Travelling Salesman Problem (TSP), 

formulated in the 18th century by Bruno et al. [4]. A salesman or distributor has to travel to several cities and 

service them in this state. The VRPs, a problem located at the heart of distribution management, was 

represented by Dantzig and Ramser [5]. Several vehicles move simultaneously and return to the warehouse 

after meeting the demand nodes. This is on condition that, first, each demand node is met by only one of 

these vehicles, and second, each vehicle is not loaded more than its capacity along the route [6, 7]. Of course, 

the goal of today's models is to base the complexities of the real world, such as transportation cost, the 

dependence of travel times on the route traffic volume, the Pickup and Delivery Problem with Time Windows 

(PDPTWs), input information such as the demand amount that changes dynamically over time. All these 

features are considered for designing a suitable routing strategy [6]–[9]. Several investigations have been done 

in the field of risk-based vehicle routing models. We mention some of the studies in continue. Soriano et al. 

[12] represented the routing problem in the vehicle carrying cash, considering the customer meeting times 

vary as the polygraph. Large Neighbourhood Search (LNS), including a linear penalty function for evaluating 

routes, optimal local searches, and an adaptive destruction rate, has been used in the present study in order 

to balance the shortcut and security [13]. An evolutionary multi-objective model based on the new Game 

Theory was proposed in order to increase money transfer security and reduce transportation costs. They 

created the two-objective VRP with a time window to minimize the money transfer risk and distance traveled 

by the vehicle. The possibility of ambush thieves is calculated using the game theory method to estimate the 

theft risk better. 
Also, the possibility of a successful theft is estimated with a Multiple-Criteria Decision Analysis (MCDA) [14]. 

Hoogeboom et al. [6] represented the time inequality to reach money centers through multiple time windows. 

In this paper, the proposed algorithm and four different penalty methods were solved by Tabu Search (TS) 

[6]. Also, to reduce cost and increase security, they solved the routing problem in the security section of 

physical money transportation through metaheuristic techniques and Local Search (LS) [13]–[16]. Yan et al. 

[19] expressed different views on increasing the level of unpredictability. To solve the problem, they used a 

route-time network technique for routing carry money to reduce the cost and increase the money transfer 

security [19]. 

2.1|Research Gaps and Innovations  

According to the literature review, the previous models have mainly focused on reducing risk and increasing 

security, whereas the solutions proposed in this paper for reducing the risk, formulated as mathematical 

models, are not observed in previous research. As an innovation, the present paper consists of new concepts 

and relationships to promote safety and reduce service risk to branches. In other words, three concepts that 

have not been mentioned in previous studies are used in this paper to reduce route risk: 
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I. The vehicle does not travel long routes and arcs in the first three movements when it carries more cash.  

II. A branch is not served at the same and similar hours on two consecutive days.  

III. As far as possible, an arc is not repeated on two consecutive days.  

Items (I) and (III) are considered to vary service time and sequence for various branches on different days. 

This technique greatly reduces the possibility of setting a consistent pattern to serve branches and increases 

service security. 

3|Defining the Problem  

In most country banks, the planning and routing problems for vehicles carrying cash are carried out 

completely empirically by treasury officials, and they are usually consistent, predictable, and without any 

change. Banks and cash transportation companies are always exposed to real risks, such as theft and armed 

attack, due to the essence of the portable commodity. Because most thieves monitor the money transfer route 

and time for a while to plan and set their theft, these attacks may cause serious harm to branch staff, 

customers, and security personnel. Therefore, in the present paper, we have proposed a model that performs 

the money delivery process with the least risk and in a specific period. Accordingly, the assumptions of the 

problem are as follows: 

I. The problem model is single-treasury. It is assumed that the vehicle carrying cash should be located in the 

treasury place at the start of the operation. They should service all demand routes in a specific period and 

return to the treasury at the end. 
II. For each point "i", a specific and defined amount of physical money demand, which is predetermined, is 

considered. It is serviced by a vehicle. 

III. The physical money volume should not exceed the roof of the vehicle. 

IV. The vehicles carrying cash should be all homogeneous and 15 vehicles. The capacity of each vehicle may 

indicate the maximum amount of money or valuable commodity that the vehicle is allowed to carry in the 

form of a currency (15 billion Riyals) and proportion to the vehicle characteristics. Due to the small volume 

of physical money, the primary constraint is the risk along the route, not the amount of portable money.  

V. The stopping time of the vehicle carrying cash at the demand points for servicing is 25 minutes, and the 

maximum specific time for the first three movements of the vehicle should not be more than 30 minutes. 

VI. The minimum time interval that a node meets on two consecutive days is 15 min. 

VII. The maximum allowable time to reach the nodes is 360 min during the day. 

VIII. The minimum distance between the treasury (origin) and branches (destination) is approximately 1 Km, 

and the maximum distance between the treasury and branches is approximately 30 Km.  

4|Materials and Methods 

In the present study, a model for money delivery operations to branches with the least risk and a specific 

period is represented. Accordingly, the proposed model is a one-objective model to minimize the route risk. 

It is formulated in the VRP considering the possibility of the simultaneous PDPTWs. Also, a genetic 

metaheuristic algorithm is used to solve this problem. The main advantage of using the meta-heuristic genetic 

algorithm compared to other algorithms (such as TS and ants colony or bees, weeds, fireflies, etc.), according 

to the results of previous studies, is that this algorithm achieves shorter travel distances in VRPs. The data in 

this study were randomly selected for all Bank Shahr branches of Tehran (135 branches). In order to validate 

the metaheuristic algorithm proposed in this study, several experimental problems in different dimensions 

were randomly generated after setting the parameters and creating the initial solution. Then, algorithm results 

were compared regarding solution quality and their computation time as well as how the representation of 
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periods and distance in the proposed model was set based on travel time, service time, minimum time interval, 

and maximum allowable time to reach the node in a min on different days. 

5|Modelling 

In the present study, a mixed-integer model is represented for the single-treasury routing problem, considering 

simultaneous pickup and delivery problems with time windows for carrying cash. 

5.1|Indexes and Sets 

N: A set of all nodes. 

i,j: Node index. 
D: A set of demand points nodes (branches). 

o: Origin node index (treasury). 

K: A set of all vehicles. 

k: Vehicle index. 

R: A set containing all movement counters. 

r: Movement counter index. 

T: A set of planning horizon days. 

t,tˊ: Day index. 

5.2|Parameters 

time ij: Travel time from node i to node j. 

ULi: Service time to node i. 

Demit: Node i demand on day t for the money to be delivered. 

Pickit: Node i demand on day t for the money it has to deliver. 

∝: Minimum time interval in which a node meets on two consecutive days. 

MAX: Maximum amount of money that can be carried by each vehicle. 

αi: Maximum allowable time to reach node i. 

M: The large number. 

5.3|Decision Variables 

Xijkrt: Variable 0 and 1. It indicates that vehicle k travels from i to j on day t in its rth movement or not. 

Likrt: The amount of new money inside vehicle k when it reaches node i on day t in its rth movement. 
Pikrt: The amount of money collected inside vehicle k when it reaches node i on day t in its rth movement. 
Sikrt: The arrival time of vehicle k when it reaches node i on day t in its rth movement. 
wˊijttˊ, wijttˊ: An ideal variable when a route of node i to node j is not repeated in two consecutive days. 
fˊittˊ, fittˊ: An ideal variable when the time interval in entering a node is not the same on two consecutive days. 
hˊijkrt, hijkrt: An ideal variable when a vehicle travels a short route in its first three movements due to carrying 

large amounts of money. 
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5.4|Mathematical Model 

Constraint (1) ensures that each branch is serviced from only one vehicle. Constraint (2) indicates that if the 

vehicle does its (r+1)th movement, it has certainly done its rth movement. Constraint (3) guarantees that each 

vehicle travels at most one route (the distance between two nodes). Constraint (4) ensures that each vehicle 

leaves the treasury a maximum of once every day. Constraint (5) ensures that the vehicle does not start its travel 

from the branch. Constraint (6) and Constraint (7) show the relationship of the money amounts inside the vehicle 

between two consecutive nodes and remove subtours. Constraint (8) shows the relationship between the times 

of reaching two consecutive nodes. Constraint (9) is one of the risk control relationships. It ensures a vehicle 

travels short routes in its first three movements due to carrying large amounts of money. 

This relationship was originally as follows: 

∑ ∑ ∑ Xijkrtr∈Rk∈Ki∈N
i≠j

= 1, for all   j ∈ D , t ∈ T .      (1) 

∑ Xjik(r+1)t

i∈N
i≠j

≤ ∑ Xijkrt

i∈N
i≠j

,   for all   j ∈ N, k ∈ K, t ∈ T, r ∈ R. 
(2) 

∑ ∑ Xijkrt

j∈N
j≠i

i∈N

≤ 1,   for all   k ∈ K, r ∈ R, t ∈ T. 
(3) 

∑ ∑ Xijkrt

j∈Dr∈R

≤ 1,   for all   i ∈ o, k ∈ K, t ∈ T. (4) 

∑ ∑ ∑ Xijkrt

k∈Kj∈N
j≠i

i∈D

≤ 0,   for all   r = 1 , t ∈ T. (5) 

Ljkrt ≤ Lik(r−1)t − Demit + M(1 − Xijkrt), for all   i, j ∈ N: i ≠ j, i ≠ o , k ∈ K, r ∈ R , t ∈ T. (6) 

Pjkrt ≥ Pik(r−1)t + Pickit − M(1 − Xijkrt),  for all   i, j ∈ N: i ≠ j, i ≠ o , k ∈ K, r ∈ R , t ∈ T. (7) 

Sjkrt ≥ Sik(r−1)t + timeij + ULi − M(1 − Xijkrt), for all   i, j ∈ N: i ≠ j, j ≠ o , k ∈ K, t ∈ T, r ∈ R.  (8) 

timeijxijkrt ≤ LB,   for all   i, j ∈ N: i ≠ j , k ∈ K, t ∈ T, r ≤ 3. (9) 

|∑ ∑ Sikrt − ∑ ∑ Sikr(t+1)

r∈Rk∈Kr∈Rk∈K

| ≥∝ ,   for all   i ∈ D: t ∈ T. (10) 

∑ ∑ xijkrt + ∑ ∑ xijkrt′k∈Kr∈Rk∈Kr∈R + wijtt′ − wˊijtt′ = 1,   for all   i, j ∈ N: i ≠ j , t, t′ ∈ T: t′ =

t + 1  
(11) 

∑ Likrt

r∈R

≤ MAX,   i ∈ D, k ∈ K , t ∈ T. (12) 

 Ljkrt + Pjkrt ≤ M ∑ xijkrt

i∈N
i≠j

,   for all   j ∈ D, k ∈ K, r ∈ R , t ∈ T. 
(13) 

Sjkrt ≤ M ∑ xijkrt

i∈N
i≠j

,   for all   j ∈ D, k ∈ K, r ∈ R , t ∈ T. 
(14) 

∑ ∑ Sikrt

r∈Rk∈K

≤ ai,   t ∈ T, i ∈ D. (15) 

Min = ∑ ∑ ∑ ∑ ∑ hˊijkrt

t∈T

3

r=1k∈Kj∈N
j≠i

i∈N

+ ∑ ∑ ∑ fitt′

t′=t+1t∈Ti∈D

+ ∑ ∑ ∑ ∑ wˊijtt′

t′=t+1t∈Tj∈N
j≠i

i∈N

 (16) 

timeijxijkrt + hijkrt − hˊijkrt = LB,   for all   i, j ∈ N: i ≠ j , k ∈ K, t ∈ T, r ≤ 3. (17) 



 Optimizing the Routing Problem in the Vehicle Carrying Cash Considering the … 148

Constraint (10) is the sec risk control relationship that ensures that the minimum time interval in which a 

vehicle meets a node is not the same on two consecutive days. This relationship was originally as follows: 

Linearization of the above equation is as follows: 

Constraint (11) is the third risk-controlling relationship that ensures that a route from i to j is not repeated on 

two consecutive days. This equation was originally as follows: 

In order for the problem to always have a solution, this constraint is considered a soft constraint Eq. (9). The 

variable of hijkrt must be 0 to establish Eq. (17). In order for the problem to always have a solution, this 

constraint is considered a soft constraint Eq. (10). The variable fitt' must be 0 to establish Eq. (18). In order 

for the problem to always have a solution, this constraint is considered a soft constraint in Eq. (11). The 

variable wˊijtt' must be 0 to establish Eq. (19). These cases are observed in the objective function. Constraint 

(12) ensures that no vehicle will carry cash more than the specified amount. This also helps reduce the risk 

level. Constraint (13) and Constraint (14) show the relationship between decision variables. Constraint (15) ensures 

that the arrival time of the vehicle to the customer is less than the maximum allowable time for arrival. 

Objective function 16 represents the route risk minimization so that the vehicle moves in a short route in the 

first three movements, the time interval that a vehicle reaches a node is not the same in two consecutive days, 

and a route from i to j is not repeated on two consecutive days. 

6|Proposed Solution Approach 

In general, any genetic algorithm for solving a problem has the following components: 

6.1|How to Represent the Solution 

The obligation to use a sequence of definite numbers represents routing problems. There are several methods 

available in numerous studies to represent it in this field. Due to the model essence and the algorithm type 

(continuous), the solution can be represented as a vector with a fixed length. A better expression is a matrix 

whose number of rows is equal to the number of periods (T) and whose number of columns is equal to the 

number of demand points (D). Numbers inside the matrix are real numbers between 1 and (number of 

vehicles +1) that are randomly generated. The notable point is the allocation of the vehicle carrying cash and 

the sequence of demand points. The integer indicates the vehicle carrying cash, and the decimal point indicates 

the sequence of demand points. The number with the lowest decimal point is served first. For example, as 

shown in Fig. 1, the number 1.97 in the following vector means the demand point No. 1 is serviced by vehicle 

No. 1, the number 2.99 means the demand point No. 2 is serviced by vehicle No. 2. The number 1.22 means 

the demand point No. 3 is serviced by vehicle No. 1, etc. Demand points of 1.03, 2.18, 1.22, etc., have the 

lowest decimal points. 

Table 1. A solution random vector. 

|∑ ∑ Sikrt − ∑ ∑ Sikrt′

r∈Rk∈Kr∈Rk∈K

| + fitt′ − fˊitt′ =∝ ,   for all   i ∈ D: t, t′ ∈ T: t′ = t + 1. (18) 

∑ ∑ Sikrt − ∑ ∑ Sikrtˊ

r∈Rk∈Kr∈Rk∈K

+ fitt′ − fˊitt′ ≥ ∝ −MZtt′ , for all  i ∈ D , t , t′ ∈ T: t′ = t + 1. (18.1) 

∑ ∑ Sikrt − ∑ ∑ Sikrtˊr∈Rk∈Kr∈Rk∈K + fitt′ − fˊitt′ ≤ −∝ +M(1 − Ztt′),   for all  i ∈ D , t, t′ ∈

T: t′ = t + 1.  
(18.2) 

∑ ∑ xijkrt + ∑ ∑ xijkrt′

k∈Kr∈Rk∈Kr∈R

≤ 1,   for all   i, j ∈ N: i ≠ j , t, t′ ∈ T: t′ = t + 1. (19) 

1.03 2.18 2.57 1.73 1.26 1.22 2.99 1.97 
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6.2|The Setting Parameters and Initialization of the Population 

In setting the parameters of the genetic algorithm, the response surface methodology can be used. The 

response surface test design method includes a set of mathematical and statistical methods for modeling and 

problem analysis. This method is used when the problem solution (goal) is affected by an individual factor 

(input), and the goal is to optimize this solution. The determining of initial parameters amounts for the 

algorithm includes initial population size (nPop = 100), probability of crossover or recombination (Pc = 0.82), 

probability of mutation (Pm = 0.36), maximum repetition number of the algorithm (Max-It = 250), type of 

selection operator and type of mutation and crossover operators. 

6.3|Production of Primary Solution 

The population is a subset of solutions in the current generation. Also, the population can be defined as a set 

of chromosomes. Therefore, we used random initialization to quantify the population. Random solutions are 

the solutions that propel the population to optimization. 

6.4|Fitness Function 

The problem variable value is placed in the fitness function, and in this way, each solution's desirability will 

be determined. The objective function is used as a fitness function in optimization problems [20]. The 

objective function determines how persons play a role in the problem field. The fitness function is usually 

used to convert the objective function value to a fitness value dependent on it. In other words, F(n) = g(f(x)). 
F is an objective function. The function g converts the objective function value to a non-negative number, 

and F is its fitness value. The value obtained from the fitness function determines whether the solution is 

appropriate or not. Since the problem type is optimization, the fitness function is the same as the objective 

problem function. The aim of the objective problem function is risk minimization. 

6.5|Selection Operator 

Different methods for genetic algorithms can be used to select genomes. This algorithm uses Roulette Wheel 

Selection (RWS) and Tournament Selection (TS) methods. 

6.6|Crossover Operator 

The crossover or recombination operator is performed by selecting two chromosomes (parents) on the 

second part of the chromosome, which is the activity sequence, and its result is two new chromosomes 

(children). Here, it is expected that the desirable features of the parents will be combined, and better children 

will be obtained. The best crossover in continuous solutions is a uniform crossover used in this algorithm. In 

other words, we need two patterns to perform the crossover operator. These patterns are randomly selected 

from the original population and multiplied by random numbers between 0 and 1 (called mask), and new 

chromosomes are produced as follows. 

In other words, as shown in Table 2, we use a mask for integration in this method. In this way, we create an 

array equal to the number of genes containing the element. The elements of this array can only take values of 

0 or 1. We randomly assign values to mask array elements. Now, we integrate two chromosomes using this 

mask. Values 1 and 0 in the mask array indicate that the gene should be selected from the first and second 

chromosomes, respectively. For the chromosome of the second child, the trend is reversed.  

x1 = (x11,x12, x13, … . , x1n): Parent 1. 

x2 = (x21,x22, x23, … . , x2n): Parent 2. 

α = (α1, α2, α3, … . , αn)   0  ≤  α ≤ 1: Mask.  
y1 = (y11,y12, y13, … . , y1n) → y1i = αix1i + (1 − αi)x2i  : Child 1.  

y2 = (y21,y22, y23, … . , y2n) → y2i = (1 − αi)x1i + αix2i  : Child 2. 
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Table 2. Mask operator. 

 

 

  

A random number is generated in the range of [0, 1] after performing the crossover operator for each 

generated chromosome. If this random number is less than 0.3, a mutation operator will perform on it. The 

position of two genes in the selected chromosome is changed to perform the mutation operator. 

6.7|Mutation Operator 

We use the mutation operator to achieve possible good points in the solution space. The mutation essence is 

somehow the transformation of current solutions. In most cases, it will not lead to good solutions. However, 

if successful, it can significantly affect the objective function and open a new space for solutions. The genetic 

algorithm considers the probability of mutation in chromosomes between 0.001 and 0.01. We hope that good 

chromosomes lost or deleted during the selection or reproduction stages will be revived using this operator. 

In addition, this operator ensures that regardless of the dispersion of the initial population, the probability of 

searching anywhere in the problem space never becomes 0. In this algorithm, the mutation operator in real 

continuous space is performed using a normal distribution as follows: 

where σN (0,1) is the step length. 

We perform mutation operation with a very low probability (less than 0.05) in the genetic algorithm because 

mutation rarely occurs in nature. As mentioned, the advantage of the mutation operator is that it gives us 

access to all search space. 

6.8|Stop Condition for Genetic Algorithm 

The genetic algorithm is repeated until the stop condition is met. The metaheuristic method stops when it 

reaches the default maximum repetition (Max-It). In other words, the maximum allowable time for 

performance can be applied as a stop criterion in each repetition, and a new solution is obtained for the 

model. 

7|Discussion and Computational Results 

The 30 problems in the form of small, medium, and large problems were generated as follows, and all 

problems were solved by GAMS and MATLAB R2015b software to validate the proposed algorithm and the 

quality of the generated solutions compared to the optimal solutions. 

I. Small samples: they include 12 problems so that 4-15 branches are serviced by 2 or 3 vehicles in 3 working 

days. 
II. Medium samples: they include ten problems so that 25-70 branches are serviced by 4-8 vehicles in 3 or 4 

working days. 

Large samples include eight problems, so 80-135 branches are serviced by 9-15 vehicles in 4-6 working days. 

7.1|Comparison of Solutions and Relative Standard Deviation (RSD) 

The proposed metaheuristic algorithm performed all 12 small problems and 18 medium to large problems 

five times in the next stage. Fig. 1 shows the results obtained from solving each problem, including the worst 

generated solution, average solutions, and the obtained model solution, along with their computational time 

in seconds. To validate the algorithm and compare them with each other, the relative percent deviation index 

or relative standard deviation is defined for the proposed algorithm with the following equation: 

0.19 0.10 0.88 0.21 0.35 0.72 Parent 1 
0.49 0.94 0.36 0.18 0.61 0.25 Parent 2 
0 1 0 0 1 1 Mask 
0.49 0.10 0.36 0.18 0.35 0.72 Child 1 

xi
new~N(xi, σ2), 

xi
new = xi + σN(0,1), 
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Fig. 1. The solution values. 

ALGS and ALGBS in this equation are the model solution and the best solution/worst solution obtained from 

the proposed algorithm five times performing the sample problem, respectively. In other words, the greatest 

difference is formulated as the model solution minus the worst solution, divided by the model solution. The 

least difference is formulated as the model solution minus the average solution, divided by the model solution 

(Fig. 2). 

Fig. 2. The solution gaps. 

These cases with the computation time are shown in Fig. 3. The maximum solution time for a problem among 

the most complex samples was recorded at 24 seconds, and the minimum time was 0 seconds. 

Fig. 3. The computation time of solutions. 

7.2|Comparison with the GAMS Method 

According to Table 3, the GAMS method had the solution for small samples but could not provide medium 

or large samples. Also, the solutions provided had a slight deviation from the model solution. However, 

RPD = (ALGS − ALGBS )/ALGBS.   
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compared to the GAMS method, the solutions were obtained in much less computational time. The 11 out 

of 12 problems of small samples had a deviation percentage of 0. Also, 7 out of 10 problems of medium 

samples had a deviation percentage of 0, and 3 problems had a deviation more than 3. All large problems had 

a deviation of more than 1. In small problems, 11 solutions were equal to the average solution. In medium 

problems, seven solutions were equal to the average solution. As known, for a problem with larger 

dimensions, the deviation of problem solutions from the average solution will be greater. However, this 

deviation is acceptable, and the proposed solution algorithm can be trusted for larger problems. GAMS 

software needed 26,860 sec to solve the most complex samples. 

7.3|Comparison with Genetic Algorithm 

We used the model solution method, average solutions, the worst solution, maximum deviation, and average 

deviations to evaluate the genetic algorithm performance. Table 3 shows the performance results of the 

proposed algorithm for 30 problems, considering the algorithm's performance time as a stop criterion. As 

shown in Table 3, the model solution is better than the average solutions in problem No. 10, which is the 

small problem, and problem No. 20, 21, and 22, which is the medium problem. Also, all model solutions are 

better than the average solutions in large problems. After performing the above stages for the genetic 

algorithm, an average deviation of 1.09% and a maximum deviation of 1.75% from the optimal solution were 

observed. 

7.4|Comparison with Other Research 

A deviation percentage of 1.3% was reported in a similar investigation conducted by Ghannadpour et al. [21], 

entitled "A game theory-based VRP with risk-minimizing of valuable commodity transportation". Also, a 

deviation percentage of 1.3% was observed in a similar investigation conducted by [22], entitled "Solving a 

multi-depot VRP based on reduction risk by a multi-objective bat algorithm". The deviation percentage was 

1.9% in the research conducted by [23], entitled "A priority-based differential evolution algorithm for 

redesigning a closed-loop supply chain using robust fuzzy optimization". In the study conducted by [24], 

entitled "Multi depots capacitated location-routing problem with simultaneous pickup and delivery and split 

loads", the deviation percentage was reported to be 0.2%. Accordingly, the proposed algorithm's performance 

is quite defensible by increasing the problem dimensions because it generates acceptable solutions relatively 

quickly for problems with medium and large dimensions. 

8|Conclusions  

In this study, we develop a model, which is formulated as a mixed-integer model, to handle the cash VRP. 

Because most thieves monitor and check the route and time of transportation money for a while to plan their 

theft. These attacks may cause serious harm to branch staff, customers, and security personnel. Therefore, 

three concepts are used in this paper to reduce route risk. This technique greatly reduces the possibility of 

setting a consistent pattern to serve branches and increases service security: 
I. The vehicle does not travel long routes in the first three movements when it carries more cash.  

II. A branch is not served at the same and similar hours on two consecutive days.  

III. As far as possible, an arc is not repeated on two consecutive days.  

The 30 problems in the form of small, medium, and large problems were generated, and all problems were 

solved by GAMS and MATLAB software to validate the proposed algorithm and the quality of the generated 

solutions compared to the optimal solutions. With attention to the inefficiency of GAMS software in solving 

the model in large dimensions, a genetic metaheuristic algorithm was used in this study. The model solution 

was equal to the average solution in 18 out of 30 problems. Finally, after performing the genetic algorithm, 

an average deviation of 1.09% and a maximum deviation of 1.75% from the optimal solution were observed. 

Although the proposed model could help security carriers efficiently formulate vehicle routes, more 
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considerations for road conditions and demand points can be incorporated into the model to make it more 

valuable in the future. Including: 

I. The limit of the distance between the source node (treasury) and the destination node (branch) should be 

added to the constraints of the problem. 

II. To solve the problem, other heuristic algorithms are also used, and the results are compared with the genetic 

algorithm and prioritized. 

Finally, how to modify the model to make it suitable for solving other similar problems, e.g., prison vehicle 

routing, could be pursued in the future. 

D = demand points (branches), K = number of vehicles carrying cash, T = number of operating days. 
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