
   

 

 

1. Introduction  

Fractional calculus is a useful mathematical tool for applied sciences. The fractional advection–

diffusion equations provide an adequate and accurate description of the movement of solute in an 

aquifer. However, there are major obstacles that restrict their applications. From a modeling viewpoint, 

the fractional advection diffusion equation has been presented as a more suitable model for many 

problems that appear in different fields, such as engineering, physics, chemistry and hydrology. 

Fractional differential equation are generalizations of classical differential equations of integer order 

that have recently proved to be valuable tools for the modelling of many physical phenomena and have 

been the focus of many studies due to their frequent appearances in various applications, such as 

physics, biology, finance and fractional dynamics, engineering, signal processing, and control theory 

[15].   

                                                      

Mahboob Dana, Z., Saberi Najafi, H., & Refahi Sheikhani, A. H. (2021). Numerical approximation for the 
fractional advection-diffusion equation using a high order difference scheme. Journal of applied research on 
industrial engineering, 8(1), 90-103.  

 

     Corresponding author 

     E-mail address: hnajafi@guilan.ac.ir 

          10.22105/jarie.2021.240340.1183 

  

Numerical Approximation for the Fractional Advection-Diffusion 

Equation Using a High Order Difference Scheme 
 

 

Zahra Mahboob Dana, Hashem Saberi Najafi, Amir Hosein Refahi Sheikhani 
Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University, 

Lahijan, Iran. 
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In this paper, a one-dimensional fractional advection-diffusion equation is 

considered. First, we propose a numerical approximation of the Riemann-

Liouville fractional derivative which is fourth-order accurate, then a numerical 

method for the fractional advection-diffusion equation using a high order finite 

difference scheme is presented. It is proved that the scheme is convergent. The 

stability analysis of numerical solutions is also discussed. The method is 

applied in several examples and the accuracy of the method is tested in terms 

of L  error norm. Furthermore, the numerical results have been compared 

with some other methods. 

 

Chronicle: 
Received: 20 July 2020 
 Reviewed: 05 September 2020  

     Revised: 04 February 2021 

Accepted: 02 March 2021 

 
   Keywords: 

Fractional Advection-Diffusion. 

Riemann-Liouville. 

Stability Analysis.  

J. Appl. Res. Ind. Eng. Vol. 8, No. 1 (2021) 90–103 

 
Journal of Applied Research on Industrial 

Engineering 
      www.journal-aprie.com 

 



91                 Numerical approximation for the fractional advection-diffusion equation using a high order... 

   

The fractional advection diffusion equation was given by 

 

 

Where u  is the concentration,V  is the average velocity, x is the spatial coordinate, t  is the time, D is 

the diffusion coefficient,   is the order of the fractional differentiation with 1 2  . The fractional 

advection diffusion equation was later generalized by Benson et al. [16] to include the parameter  , 

given by 

 

 

for 1 0   , the transition probability is skewed backward, while for 0 1   the transition probability 

is skewed forward.  For 0  , we obtain the model presented in [17], which can be expressed as follows 

 

 

 

where the fractional operator is given by 

 

 

with initial condition 

u( x,0 ) f ( x ),x .  

The Riemann–Liouville fractional derivatives of order α, for x [a,b], a b    , are defined by 

 

 

 

 

A meshless method of Eq. (1) has been discussed by Mardani et al. [1] and Tayebi et al. [2]. A functional 

variable method is given in Aminikhah et al. [4]. An first integral method for the solution of fractional 

differential equations is given in [5]. Lattice Boltzmann method [3]. And finite element methods for 

linear and nonlinear diffusion problems [7], [8], [9], [12], [13], and [14]. In this paper, by using a Lax–

Wendroff-type time discretization procedure, we develop an explicit numerical method which is second 

order in time and space for fractional advection diffusion problems with source terms in unbounded and 

bounded domains with homogeneous boundary conditions. Since the numerical method is explicit, it is 

a more cost-effective method than the implicit schemes. Additionally, explicit methods are better tools 

for problems wherein advection plays an important role. The classical Lax–Wendroff method was 

derived for hyperbolic equations [18] and afterwards was extended for advection diffusion equations. 

This method uses a small stencil in time and also uses the original differential equation extensively, that 

is, the discretization procedure converts time derivatives in space derivatives. The layout of this paper 
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is as follows. In Section 2, we will illustrate construction of the scheme and in Section 3 we describe 

the numerical method. In Section 4, we study the stability analysis. In the Section 5, we will prove the 

convergence of difference scheme analysis. The Section 6 includes some numerical tests which confirm 

the fourth-order convergence of the numerical method. A summary is given at the end of the paper in 

Section 7.  

2.   Construction of the Scheme  

we present a new numerical approximation that this approximation is fourth-order accurate. Consider 

first the left derivative, that is, 

 

                                           

We define the mesh points x j x, j
j

    where h x denotes the uniform space step. For a fixed 

time t , let us denote  
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That is 
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It follows 

 

 

 

 

 

Note that 

 

 

Then 

 

 

 

And 

 

 

We know that G( ) 1  is stability condition; therefore, it is necessary that 

 

Therefore, for
1

K
12

  , we have
2

G( ) 1  , for all  .     

5. Convergence Analysis 

In this section we analyze the convergence of the numerical method using the framework of consistency 

and stability. We have the global error given by 
n n ne u U  , where nu  and nU are respectively exact 

and approximate solutions. The truncation error at each discrete point x j , is given by  
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Therefore, 

 

  

 

6. Numerical Experiments 

In this section we consider examples that are solved by our presented method in previous sections. In 

order to illustrate the accuracy of the method, we used the error norm L
which is defined as follows 

 

 

And we compare our results with the results in [10]. 

Example 1. We assume 1   in Eq. (3), that is, we have the equation 

 

 

 

In the domain 0 x 1  , we assume the problem has initial condition 
4u( x,0 ) x and boundary 

conditions 
tu(0,t ) 0,u(1,t ) e  . Let V 0.2

( 5 )
D

24

 
  And  

t 3 1p( x,t ) e x ( 4V x x ).     

The exact solution is given by t 4u( x,t ) e x .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Shows the exact solution of Eq. (38) when 1  . 

nn n 2 2
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.   
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V D u(x, t) p(x, t).
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Fig. 2. Comparison of the exact and numerical solution with 1.2, 1   . 

 

Table 1. The computational results for example 1 by our method and method in [10] and [3]. 

 

Table 1 shows the errors of our proposed method with values of h  at different final times using L
. 

Numerical results of this table confirm that the method has fourth-order of accuracy in temporal and 

spatial components, respectively. Comparison of this method to other methods, [10] and [3], confirms 

the efficiency and high accuracy of our proposed method.  

The second example considers Eq. (3) for 0  , that is, we have the equation 

 

 

Example 2. The second example considers Eq. (3) for 0  , that is, we have the equation 

  1.2   1.4   1.6   2   

Our method 

x 0.1   
L  70.2376 10  70.17609 10  70.2151 10  70.16705 10  

x 0.01   L  90.2256 10  90.1741 10  90.2004 10  90.1079 10  

Method in [10] 

x 0.1   
L  30.4603 10  30.3208 10  30.4453 10  20.1239 10  

 L  40.5667 10  40.4444 10  40.4864 10  40.1095 10  

Method in [3] 

x 0.1   
L  50.5512 10  50.3209 10  60.1729 10

50.7412 10  

50.1782 10  

x 0.01   L  70.1920 10  70.6724 10  70.4132 10   

 
( ) 

x 0.01 

u(x, t) u(x, t) D u(x, t) u(x, t)
V p(x, t).

t x 2 x ( x)

 

 

    
     

     
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In the domain 0 x 2  . We assume the initial   condition is 
2 2u( x,0 ) 4x ( 2 x )   and the boundary 

conditions are u(0,t ) 0,u( 2,t ) 0  . 

Let V 0.05
( 5 )

D
2

 
   and   

t 2 2 2 2 2p( x,t ) 4e ( x (2 x ) 4Vx( x 3x 2) x A( x, ) (2 x ) B( x, )).              

Where  

2

2

A(x, ) 2 ( 1) 6 (2 x) 6(2 x)

B(x, ) 2 ( 1) 6 x 6x .

         

       
 

The exact solution is given by .t 2 2u( x,t ) 4e x (2 x )    

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Shows the numerical approximation of Eq. (39) when 0  . 

 

 

 

 

 

 u(x, t) u(x, t) D u(x, t) u(x, t)
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t x 2 x ( x)

 

 
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Fig. 4. Comparison of the exact and numerical solution with 0, x 0.1   . 

 

Table 2. The computational results for example 2. 

 

According to Table 2 the results indicate that our supposed scheme has a high accuracy and shows that 

errors are very small. our method is conditionally stable, consistent and convergent, which is fourth-

order accurate with respect to the space step and second – order accurate to the time step. 

Therefore, our method is more convenient than the [6], which is second order accurate with respect to 

the space step. 

7.  Conclusion 

In this work, we have applied a high order finite difference method for the fractional advection-diffusion 

equation. Furthermore, we proved that this scheme is stable and convergent. Numerical results of the 

above tables confirm that the method has fourth-order of accuracy in temporal and spatial components, 

and the errors are very small. This scheme is an accurate and efficient approach for the solution of such 

types of nonlinear partial differential equations, we suggest to use this method for solving nonlinear 

equations [6] and [11]. We also see that the method presented produces very good results compared 

with the second order and fourth order methods proposed in [10] and [3]. Comparison of this method 

to other methods confirms the efficiency and high accuracy of our proposed method. 

   1.2   1.4   1.6   2   

Our method x 0.1   L
 

50.7823 10  50.1240 10  50.1782 10  50.4512 10  

x 0.01   L
 

80.2361 10  80.1421 10  80.2344 10  80.1761 10  

Method [6] x 0.1   L
 

30.3216 10  30.14213 10  30.1214 10  30.2325 10  

x 0.01   L
 

50.7451 10  50.4617 10  50.1238 10  50.2113 10  
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